Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T10:50:34.590Z Has data issue: false hasContentIssue false

Nanopatterned optical and magnetic La0.6Ca0.4MnO3 arrays: Synthesis, fabrication, and properties

Published online by Cambridge University Press:  31 January 2011

Yu-Ching Huang
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan
Yang-Fang Chen
Affiliation:
Department of Physics, National Taiwan University, Taipei 106-17, Taiwan
Wei-Fang Su*
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei 106-17, Taiwan
*
a) Address all correspondence to this author. e-mail: suwf@ntu.edu.tw
Get access

Abstract

We have fabricated La0.6Ca0.4MnO3 periodic arrays exhibiting tunable optical properties and magnetic properties using nontoxic and environmentally friendly electron beam resist made from La0.6Ca0.4MnO3 sol-gel precursor. We studied their unique optical properties by using the spectral microreflectometer and their magnetic properties using the superconducting quantum interference device and magnetic force microscopy. Additionally, the resist has the ability to demonstrate both positive and negative resist behaviors depending on the electron beam dosage. With these special characteristics, we can fabricate periodic structure on a thin film possessing controlled optical reflectance properties with one fixed design electron beam pattern without changing the structural parameters but changing the electron beam dosage only. Our approach provides an uncomplicated route for the fabrication of nanometer scale magnetic patterns, which serve as the building blocks in the search for novel properties of periodic magnetic arrays.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wu, C.S., Lin, C.F., Lin, H.Y., Lee, C.L., Chen, C.D.: Polymer-based photonic crystals fabricated with single-step electron-beam lithography. Adv. Mater. 19, (19)3052 (2007)CrossRefGoogle Scholar
2.Chueh, Y.L., Ko, M.T., Chou, L.J., Chen, L.J., Wu, C.S., Chen, C.D.: TaSi2 nanowires: A potential field emitter and interconnect. Nano Lett. 6, (8)1637 (2006)CrossRefGoogle ScholarPubMed
3.Clendenning, S.B., Aouba, S., Rayat, M.S., Grozen, D., Sorge, J.B., Broderson, P.M., Sodhi, R.M.S., Lu, Z.H., Yip, C.M., Freeman, M.R., Ruda, H.E., Manners, I.: Direct writing of patterned ceramics using electron-beam lithography and metallopolymer resists. Adv. Mater. 16, (3)215 (2004)CrossRefGoogle Scholar
4.MacLachlan, M.J., Ginzburg, M., Coombs, N., Coyle, T.W., Raju, N.P., Greedan, J.E., Ozin, G.A., Manners, I.: Shaped ceramics with tunable magnetic properties from metal-containing polymers. Science 287, 1460 (2000)CrossRefGoogle ScholarPubMed
5.Saifullah, M.S.M., Subramanian, K.R.V., Kang, D.J., Anderson, D., Huck, W.T.S., Jones, G.A.C., Welland, M.E.: Sub-10 nm high-aspect-ratio patterning of ZnO using an electron beam. Adv. Mater. 17, (14)1757 (2005)CrossRefGoogle Scholar
6.Subramanian, K.R.V., Saifullah, M.S.M., Tapley, E., Kang, D.J., Welland, M.E., Butler, M.: Direct writing of ZrO2 on a sub-10 nm scale using an electron beam. Nanotech. 15, (1)158 (2004)CrossRefGoogle Scholar
7.Alexe, M., Harnagea, C., Visinoiu, A., Pignolet, A., Hesse, D., Gösele, U.: Patterning and switching of nano-size ferroelectric memory cells. Scr. Mater. 44, (8)1175 (2001)CrossRefGoogle Scholar
8.Chen, J.K., Ko, F.H., Chen, H.L., Chang, F.C.: Mechanism and modeling of ring pattern formation for electron beam exposure on zwitterresist. Jpn. J. Appl. Phys. 42, 3838 (2003)CrossRefGoogle Scholar
9.Chen, J.K., Ko, F.H., Chang, F.C.: Structural transformation of acrylic resin upon controlled electron-beam exposure yields positive and negative resists. Adv. Funct. Mater. 15, (7)1147 (2005)CrossRefGoogle Scholar
10.Lin, Q., Steinhäusler, T., Simpson, L., Wilder, M., Medeiros, D.R., Willson, C.G., Havard, J., Fréchet, J.M.J.A.: Water-castable, water-developable chemically amplified negative-tone resist. Chem. Mater. 9, (8)1725 (1997)CrossRefGoogle Scholar
11.Havard, J.M., Shim, S.Y., Fréchet, J.M.J., Lin, Q., Medeiros, D.R., Willson, C.G., Byers, J.D.: Design of photoresists with reduced environmental impact. 1. Water-soluble resists based on photo-cross-linking of poly(vinyl alcohol). Chem. Mater. 11, (3)719 (1999)CrossRefGoogle Scholar
12.Havard, J.M., Vladimirov, N., Fréchet, J.M.J., Yamada, S., Willson, C.G., Byers, J.D.: Photoresists with reduced environmental impact: Water-soluble resists based on photo-cross-linking of a sugar-containing polymethacrylate. Macromol. 32, (1)86 (1999)CrossRefGoogle Scholar
13.Cooper, I.A.: Recent developments in materials synthesis and processing using supercritical CO2. Adv. Mater. 13, (14)1111 (2001)3.0.CO;2-L>CrossRefGoogle Scholar
14.Cheng, J.Y., Ross, C.A., Smith, H.I., Thomas, E.L.: Templated self-assembly of block copolymers: Top-down helps bottom-up. Adv. Mater. 18, (19)2505 (2006)CrossRefGoogle Scholar
15.Cao, J.R., Lee, P.T., Choi, S.J., Dapkus, J.D., Dapkus, P.D.: Lithographic fine-tuning of vertical cavity surface emitting laser-pumped two-dimensional photonic crystal lasers. J. Nanosci. Nanotechnol. 2, (3–4)313 (2002)CrossRefGoogle ScholarPubMed
16.Chen, Y.L., Chen, C.C., Jeng, J.C., Chen, Y.F.: Enhancement of optical properties of CdSe pillars fabricated by the combination of electron-beam lithography and electrochemical deposition. Appl. Phys. Lett. 85, (7)1259 (2004)CrossRefGoogle Scholar
17.Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, (20)2059 (1987)CrossRefGoogle ScholarPubMed
18.John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, (23)2486 (1987)CrossRefGoogle ScholarPubMed
19.Fleischhaker, F., Zentel, R.: Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots. Chem. Mater. 17, (6)1346 (2005)CrossRefGoogle Scholar
20.Yan, Q., Zhou, Z., Zhao, X.S.: Introduction of three-dimensional extrinsic defects into colloidal photonic crystals. Chem. Mater. 17, (12)3069 (2005)CrossRefGoogle Scholar
21.Chuang, C.M., Lu, W.B., Su, W.F., Lin, C.M., Chen, Y.F.: Manipulation of luminescence from CdSe nanoparticles by 3-D photonic crystal. J. Appl. Phys. 97, 096104 (2005)CrossRefGoogle Scholar
22.Srivastava, P., Srivastava, O.N., Singh, H.K., Siwach, P.K.: Synthesis and magnetotransport properties of Mm-doped La0.7Ca0.3MnO3. J. Alloys Compd. 459, (1–2)61 (2008)CrossRefGoogle Scholar
23.Tang, F.L., Zhang, X.V.: Atomic distribution and local structure in charge-ordered La1/3Ca2/3MnO3. Phys. Rev. B: Condens. Matter 73, (14)144401 (2006)CrossRefGoogle Scholar
24.Dabrowski, B., Dybzinski, R., Bukowski, Z., Chmaissem, O., Jorgensen, J.D.: Oxygen content and structures of La1–xCaxMnO3+d as a function of synthesis conditions. J. Solid State Chem. 146, (2)448 (1999)CrossRefGoogle Scholar
25.Mori, S., Chen, C.H., Cheong, S.W.: Pairing of charge-ordered stripes in (La,Ca)MnO3. Nature 392, (6675)473 (1998)CrossRefGoogle Scholar
26.Chen, C.H., Cheong, S.W., Hwang, H.Y.: Charge-ordered stripes in La1–xCaxMnO3 with x > 0.5. J. Appl. Phys. 81, (8)4326 (1997)CrossRefGoogle Scholar
27.Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H.: Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, (5157)413 (1994)CrossRefGoogle ScholarPubMed
28.Kim, K.H., Lee, S., Noh, T.W., Cheong, S.W.: Charge ordering fluctuation and optical pseudogap in La1–xCaxMnO3. Phys. Rev. Lett. 88, (16)167204 (2002)CrossRefGoogle Scholar
29.Das, A., Chakraborty, K.R., Gupta, S.S., Kulshreshtha, S.K., Paranjpe, S.K.: Structural and magnetic ordering in La0.6Ca0.4MnO3. J. Magn. Magn. Mater. 237, (1)41 (2001)CrossRefGoogle Scholar
30.Laiho, R., Lisunov, K.G., Lahderanta, E., Petrenko, P., Stamov, V.N., Zakhvalinskii, V.S.: Low-field magnetic properties of La1–xCaxMnO3 (0 < x < 0.4). J. Magn. Magn. Mater. 213, (3)271 (2000)CrossRefGoogle Scholar
31.Gennes, P.G.D.: Effects of double exchange in magnetic crystals. Phys. Rev. 118, (1)141 (1960)CrossRefGoogle Scholar
32.Wu, M.C., Chuang, C.M., Chen, Y.F., Su, Y.F.: Fabrication and optical properties of periodical structures based on a water-developable and tunable La0.7Sr0.3MnO3 resist.J. Mater. Chem. 18, 780 (2008)CrossRefGoogle Scholar
33.Chuang, C.M., Wu, M.C., Huang, Y.C., Cheng, K.C., Lin, C.F., Chen, Y.F., Su, Y.F.: Nanolithography made from water-based spin-coatable LSMO resist. Nanotechnology 17, (14)4399 (2006)CrossRefGoogle Scholar
34.Chakraborty, A., Devi, P.S., Roy, S., Maiti, H.S.: Low-temperature synthesis of ultrafine La0.84Sr0.16MnO3 powder by an autoignition process. J. Mater. Res. 9, (4)986 (1994)CrossRefGoogle Scholar
35.Gaudon, M., Laberty-Robert, C., Ansart, F., Stevens, P., Rousset, A.: Preparation and characterization of La1–xSrxMnO3+d (0 < x < 0.6) powder by sol–gel processing. Solid State Sci. 4, (1)125 (2002)CrossRefGoogle Scholar
36.Kuramochi, H., Uzumaki, T., Yasutake, M., Tanaka, A., Akinaga, H., Yokoyama, H.: A magnetic force microscope using CoFe-coated carbon nanotube probes. Nanotechnology 16, (1)24 (2005)CrossRefGoogle Scholar
37.Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. 43, (5)461 (1931)CrossRefGoogle Scholar