Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T01:40:15.471Z Has data issue: false hasContentIssue false

Microstructure of liquid phase sintered superplastic silicon carbide ceramics

Published online by Cambridge University Press:  31 January 2011

Chong-Min Wang
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba-shi, Ibaraki, 305, Japan
Mamoru Mitomo
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba-shi, Ibaraki, 305, Japan
Hideyuki Emoto
Affiliation:
National Institute for Research in Inorganic Materials, Namiki 1–1, Tsukuba-shi, Ibaraki, 305, Japan
Get access

Abstract

Superplastic silicon carbide ceramics were fabricated at low temperatures by a liquid phase sintering very fine β–SiC powder. The microstructural features of this material, of both before and after the superplastic deformation, have been investigated by transmission electron microscopy. Evaluated from the point of view of phase transformation, dislocation motion, and dynamic grain growth, the materials show very stable microstructures, indicating that the superplastic deformation process was dominated by the liquid phase assisted grain boundary sliding. In addition, the material is also characterized by the formation of clusters of fine SiC particles (5–20 nm) encapsulated in layered graphitized carbon.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Prochazka, S., in Special Ceramics 6, edited by Popper, P. (The British Ceramic Research Association, Stoke-on-Trent, United Kingdom, 1975), pp. 171181.Google Scholar
2.Suzuki, K. and Sasaki, M., in Fundamental Structure of Ceramics, edited by Sōmiya, S. and Bradt, R. C. (Terra Scientific Publishing Company, Tokyo, Japan, 1987), pp. 7587.Google Scholar
3.Krivanek, O. L., Shaw, T. M., and Thomes, G., J. Am. Ceram. Soc. 62, 585590 (1979).CrossRefGoogle Scholar
4.Rahaman, M. N., Boiteux, Y., and De Jonghe, L. C., Bull. Am. Ceram. Soc. 65, 11711176 (1986).Google Scholar
5.Heuer, A. H., Fryburg, G. A., Ogbuji, L. U., and Mitchell, T. E., J. Am. Ceram. Soc. 61, 406412 (1978).CrossRefGoogle Scholar
6.Rahaman, M. N., Riley, F. L., and Brook, R. J., J. Am. Ceram. Soc. 63, 648653 (1980).CrossRefGoogle Scholar
7.Messing, G. L., Kumagai, M., Shellman, R. A., and McArdle, J. L., in The Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (Wiley, New York, 1986), pp. 259271.Google Scholar
8.Hoffmann, M. J., in Tailoring of Mechanical Properties of Si3N4 Ceramics, edited by Hoffmann, M. J. and Petzow, G. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994), pp. 5972.Google Scholar
9.Mitomo, M., Hirosaki, N., and Hirotsuru, H., MRS Bull. 20, 3841 (1995).CrossRefGoogle Scholar
10.Omori, M. and Takei, H., J. Am. Ceram. Soc. 65, C-92 (1982).CrossRefGoogle Scholar
11.Cutler, R. A. and Jackson, T. B., in Ceramic Materials and Components for Engines, Proc. 3rd Int. Symp., edited by Tennery, V. J. (The American Ceramic Society, Westerville, OH, 1989), pp. 309318.Google Scholar
12.Mulla, M. A. and Krstic, V. D., Am. Ceram. Soc. Bull. 70, 439443 (1991).Google Scholar
13.Cordery, L., Niesz, D. E., and Shanefield, D. J., in Sintering of Advanced Ceramics, edited by Handwerker, C. A., Blendell, J. E., and Kaysser, W. A. (The American Ceramic Society, Westerville, OH, 1990), Vol. 7, pp. 618636.Google Scholar
14.Sigl, L. S. and Kleebe, H-J., J. Am. Ceram. Soc. 76, 773776 (1993).Google Scholar
15.Kim, Y-W., Mitomo, M., and Hirotsuru, H., J. Am. Ceram. Soc. 78, 31453148 (1995).CrossRefGoogle Scholar
16.Mitomo, M., Hirotsuru, H., Suematsu, H., and Nishimura, T., J. Am. Ceram. Soc. 78, 211214 (1995).CrossRefGoogle Scholar
17.Mitomo, M., Kim, Y-W., and Hirotsuru, H., J. Mater. Res. 11, 16011604 (1996).Google Scholar
18.Wilkinson, D. S. and Caceres, C. H., Acta Metall. 32, 13351345 (1984).CrossRefGoogle Scholar
19. X.Wu and Chen, I. W., J. Am. Ceram. Soc. 75, 27332741 (1992).Google Scholar
20.Carry, C. and Mocellin, A., in Materials Science Research, edited by Tressler, T. E. and Bradt, R. C. (Plenum Press, New York, 1988), Vol. 18, pp. 391403.Google Scholar
21.Duval-Rivi‘ere, M. L. and Vicens, J., Philos. Mag. A69, 451470 (1994).CrossRefGoogle Scholar
22.Wang, C-M., Mitomo, M., Nishimura, T., and Bando, Y., J. Am. Ceram. Soc. 80, 12131221 (1997).CrossRefGoogle Scholar
23.Hirotsuru, H., Mitomo, M., and Nishimura, T., J. Ceram. Soc. Jpn. 104, 2326 (1996).CrossRefGoogle Scholar
24.Mitomo, M., Nishimura, T., and Hirotsuru, H., Euro. J. Solid State Inorg. Chem. 32, 693697 (1995).Google Scholar
25.Hahn, B., Weissmann, R., and Greil, P., J. Mater. Sci. Lett. 15, 12431244 (1996).CrossRefGoogle Scholar
26.Renlund, G. M. and Prochazka, S., J. Mater. Res. 6, 27232734 (1991).Google Scholar
27.Seitz, J., Bill, J., Egger, N., and Aldinger, F., J. Euro. Ceram. Soc. 16, 885891 (1996).CrossRefGoogle Scholar
28.Banhart, F. and Ajayan, P. M., Nature (London), 382, 433435 (1996).CrossRefGoogle Scholar
29.Mitomo, M. and Wang, C. M., Japanese Patent, pending.Google Scholar