Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T22:56:07.075Z Has data issue: false hasContentIssue false

Microstructural evolution of the BSCCO-2223 during powder-in-tube processing

Published online by Cambridge University Press:  03 March 2011

C.L. Briant
Affiliation:
Research and Development Center, General Electric Company, P.O. Box 8, Schenectady, New York 12301
E.L. Hall
Affiliation:
Research and Development Center, General Electric Company, P.O. Box 8, Schenectady, New York 12301
K.W. Lay
Affiliation:
Research and Development Center, General Electric Company, P.O. Box 8, Schenectady, New York 12301
I.E. Tkaczyk
Affiliation:
Research and Development Center, General Electric Company, P.O. Box 8, Schenectady, New York 12301
Get access

Abstract

This paper reports a study of the microstructural changes that occur when BSCCO powder is processed by the powder-in-tube method. In this study the initial powder consisted of the 2212 phase plus second phases containing Ca, Cu, Sr, and Pb. When the material was drawn, there was no alignment of the 2212 phase and the second phase particles remained large and blocky. Rolling induced a small amount of alignment into the 2212 phase so that its c-axis was perpendicular to the rolling direction. Rolling also caused the second phase particles to become flatter. When these rolled samples were annealed at 828 °C, the core sintered into a platelet structure, and there was an increase in the amount of aligned material, particularly after annealing treatments of 16 and 32 h. After 8 h at 828 °C, the 2212 variant of the superconducting phase began to transform to the 2223 variant. Pressing this structure improved the alignment, and annealing after pressing allowed further conversion of the 2212 phase to the 2223 phase and apparently removed the strains produced by the pressing. Repeated pressing improved the alignment and repeated annealing allowed more conversion of 2212 to 2223. Both the improved alignment, produced by pressing, and the transformation of 2212 to 2223, produced by the anneals, caused the superconducting properties of the material to improve.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Haider, P. and Motowidlo, L., JOM 44, 54 (1992).Google Scholar
2Okada, M., Nishiwaki, R., Kamo, T., Matsumoto, T., Aihara, K., Matsuda, S., and Seido, M., Jpn. J. Appl. Phys. 27, L2345 (1988).CrossRefGoogle Scholar
3Sandhage, K. H., Riley, G. N. Jr., and Carter, W. L., JOM 45, 21 (1991).CrossRefGoogle Scholar
4Hellstrom, E. E., MRS Bulletin XVII, 45 (1992).CrossRefGoogle Scholar
5Dou, S. X. and Liu, H. K., Supercon. Sci. Technol. 8, 297 (1993).CrossRefGoogle Scholar
6Hikata, T., Ueyama, M., and Kato, T., Phys. C 190, 50 (1991).Google Scholar
7Maeda, H., Tanaka, Y., Fukutoni, M., and Asano, T., Jpn. J. Appl.Phys. 27, L209 (1988).CrossRefGoogle Scholar
8Tallon, J. L., Buckley, R. G., Gilberd, P. W., Presland, M. R., Brown, I. W. M., Bowden, M. E., Christian, L. A., and Goguel, R., Nature (London) 333, 153 (1988).CrossRefGoogle Scholar
9Flükiger, R., Graf, T., Decrous, M., Groth, C., and Yamada, Y., IEEETrans. Magn. 27, 1258 (1991).CrossRefGoogle Scholar
10Yamada, Y., Obst, B., and Flükiger, R., Supercon. Sci. Technol. 4, 165 (1991).CrossRefGoogle Scholar
11Asano, T., Tanaka, Y., Fukutoni, M., Jikihara, K., Machida, J., and Maeda, H., Jpn. J. Appl. Phys. 27, L1652 (1988).CrossRefGoogle Scholar
12Lay, K. W., in Layered Superconductors: Fabrication Properties, and Applications, edited by Shaw, D. T., Tsuei, C. C., Schneider, T. R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992).Google Scholar
13Um, W. S., Kim, D. H., and Kim, H. G., Jpn. J. Appl. Phys. 32, 3799 (1993).CrossRefGoogle Scholar
14McCarron, E. M. III, Subramanian, M. A., Calabrese, J. C., and Harlow, R. L., Mater. Res. Bull. XXIII, 1355 (1988).CrossRefGoogle Scholar
15Burton, B. P., Rawn, C. J., Roth, R., and Hwang, N. M., J. Res. NIST 98, 469 (1993).CrossRefGoogle Scholar
16Liang, J., Chen, Z., Wu, F., and Xie, S., Solid State Commun. 75, 247 (1990).CrossRefGoogle Scholar
17Dieter, G., Mechanical Metallurgy (McGraw-Hill, New York, 1961), p. 532.Google Scholar
18Ekin, J., Larson, T. M., Hermann, A. M., Sheng, Z. Z., Tagano, K., and Kamakura, H., Physica (Utrecht) 160C, 489 (1989).Google Scholar
19Tkaczyk, J. E., Arendt, R. H., Garbauskas, M. F., Hart, H. R., Lay, K. W., and Luborsky, F. E., Phys. Rev. B 45, 12506 (1992).CrossRefGoogle Scholar
20Maley, M. P., Kung, P. J., Coulter, J. Y., Carter, W. L., and McHenry, M. E., Phys. Rev. B 45, 7566 (1992).CrossRefGoogle Scholar