Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T22:35:46.176Z Has data issue: false hasContentIssue false

Low temperature synthesis and some physical properties of barium-substituted lanthanum manganite (La1−x BaxMnO3)

Published online by Cambridge University Press:  03 March 2011

Amitava Chakraborty
Affiliation:
Electroceramics Laboratory, Central Glass & Ceramic Research Institute, Calcutta 700 032, India
P. Sujatha Dévi
Affiliation:
Electroceramics Laboratory, Central Glass & Ceramic Research Institute, Calcutta 700 032, India
H.S. Maiti
Affiliation:
Electroceramics Laboratory, Central Glass & Ceramic Research Institute, Calcutta 700 032, India
Get access

Abstract

Barium-substituted lanthanum manganite (La1−xBaxMnO3) powders have been synthesized by a novel autoignition technique, and the effect of barium content on the autoignition characteristics, stability of the compound, and the powder characteristics have been investigated. X-ray examinations show that the material exists as a single phase having perovskite structure up to 40 at. % substitution of Ba for La, beyond which mixed phases of LaMnO3 and BaMnO3 are formed at least up to the highest limit of substitution (50 at. %) and calcination temperature (1350 °C) investigated. Electrical conductivity and thermal expansion behavior of the material have been studied for plausible use as cathode material in solid oxide fuel cells.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jonker, G. H. and Van Santen, J. H., Physica (Utrecht) XVI, 337 (1950).Google Scholar
2Jonker, G. H., Physica (Utrecht) XXII, 707 (1956).CrossRefGoogle Scholar
3Elemans, J.B.A.A., Laar, B. V., Van Der Veen, K. R., and Loopstra, B. O., J. Solid State Chem. 3, 238 (1971).CrossRefGoogle Scholar
4Baythoun, M. S. G. and Sale, F. R., J. Mater. Sci. 17, 2757 (1982).CrossRefGoogle Scholar
5Taguchi, H., Matsuda, D., Nagao, M., Tanihata, K., and Miyamoto, Y., J. Am. Ceram. Soc. 75, 201 (1992).CrossRefGoogle Scholar
6Bilger, S., Syskakis, E., Naoumidis, A., and Nickel, H., J. Am. Ceram. Soc. 75, 964 (1992).CrossRefGoogle Scholar
7Johnson, D. W., Gallagher, P. K., Schrey, F., and Rhodes, W. W., Am. Ceram. Soc. Bull. 55, 520 (1976).Google Scholar
8Chakraborty, A., Devi, P. S., Roy, S., and Maiti, H. S., J. Mater. Res. 9, 986 (1994).CrossRefGoogle Scholar
9Chakraborty, A., Devi, P. S., and Maiti, H. S., Mater. Lett. 20, 63 (1994).CrossRefGoogle Scholar
10Roy, S., Das Sharma, A., Roy, S. N., and Maiti, H. S., J. Mater. Res. 8, 2761 (1993).CrossRefGoogle Scholar
11Devi, P. S. and Maiti, H. S., J. Solid State Chem. 109, 35 (1994).Google Scholar
12Devi, P. S. and Maiti, H. S., J. Mater. Res. 9, 1357 (1994).Google Scholar
13Taguchi, H., Matsuda, D., Nagao, M., and Shibahara, H., J. Mater. Sci. Lett. 12, 891 (1993).CrossRefGoogle Scholar
14Hammouche, A., Siebert, E., and Hammou, A., Mater. Res. Bull. XXIV, 367 (1989).CrossRefGoogle Scholar
15Wold, A. and Arnott, R. J., J. Phys. Chem. Solids 9, 176 (1959).CrossRefGoogle Scholar
16Volger, J., Physica (Utrecht) XX, 49 (1954).CrossRefGoogle Scholar
17Disalvo, F. J. and Gallagher, P. K., J. Solid State Chem. 14, 395 (1975).Google Scholar
18Tofield, B. C. and Scott, W. R., J. Solid State Chem. 10, 183 (1974).CrossRefGoogle Scholar
19Goodenough, J. B., Magnetism and the Chemical Bond (Inter-science Publisher, New York, 1963).Google Scholar
20Richerson, D. W., Modern Ceramic Engineering, 2nd ed. (Marcel Dekker, Inc., New York, 1992), p. 843.Google Scholar
21Subba Rao, G. V., Wanklyn, B. M., and Rao, C. N. R., J. Phys. Chem. Solids 32, 345 (1971).CrossRefGoogle Scholar
22Tanaka, J., Takahashi, K., Yukino, K., and Horiuchi, S., Phys. Status Solidi A 80, 621 (1983).CrossRefGoogle Scholar
23Tanaka, J., Umehara, M.Tamura, S., Tsukioka, M., and Ehara, S., J. Phys. Soc. Jpn. 51, 1236 (1982).CrossRefGoogle Scholar
24Kuo, J. H., Anderson, H. U., and Sparlin, D. M., J. Solid State Chem. 87, 55 (1990).CrossRefGoogle Scholar
25Kertesz, M., Riess, I., Tannhauser, D. S., Langpage, R., and Rhor, F. J., J. Solid State Chem. 42, 125 (1982).CrossRefGoogle Scholar
26Karim, D. P. and Aldred, A. T., Phys. Rev. B 20, 2255 (1979).CrossRefGoogle Scholar
27Hammouche, A., Schouler, E. J. L., and Henault, M., Solid State Ionics 28–30, 1205 (1988).Google Scholar
28Mackor, A., Koster, T. P. M., Kraaijkamp, J. G., Gerretsen, J., and Van Eijk, J.P. G.M., in Proc. 2nd Int. Symp. on Solid Oxide Fuel Cells, edited by Grosz, F., Zegers, P., Singhal, S. C., and Yamamoto, O. (Commission of the European Communities, Luxembourg, Belgium, 1991), p. 463.Google Scholar
29Shuk, P., Tichonova, L., and Guth, U., Solid State Ionics 68, 177 (1994).Google Scholar
30Jonker, G. H., J. Appl. Phys. 37, 1424 (1966).Google Scholar
31Roth, R. S., in Progress in Science and Technology of Rare Earths (Pergamon, Elmsford, NY, 1964).Google Scholar
32Van Roosmalen, J. A. M., Huijsmans, J. P. P., and Cordfunke, E. H. P., in Proc. 2nd Int. Symp. on Solid Oxide Fuel Cells, edited by Grosz, F., Zergers, P., Singhal, S. C., and Yamomoto, O. (Commission of the European Communities, Luxembourg, Belgium, 1991), p. 507.Google Scholar
33Maiti, H. S., Chakraborty, A., and Paria, M. K., in Proc. 3rd Int. Symp. on Solid Oxide Fuel Cells, edited by Singhal, S. C. and Iwahara, H. (The Electrochemical Society, Pennington, NJ, 1993), p. 190.Google Scholar
34Minh, N. Q., J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
35Koc, R. and Anderson, H. U., J. Mater. Sci. 27, 5837 (1992).CrossRefGoogle Scholar