Published online by Cambridge University Press: 19 January 2012
In this article, the binary-phased PbTe–Sb2Te3 nanopowders were synthesized via a hydro/solvo-thermal route to improve the thermoelectric properties of PbTe matrix material. The single-phased PbTe powders exhibit pure nanoparticles, but the binary-phased PbTe–Sb2Te3 powders have a mixed morphology composed of nanospheres and nanoribbons. Our results suggest that the thermal conductivity of the binary-phased PbTe–Sb2Te3 bulks can be reduced significantly and the Seebeck coefficient can be increased obviously, although the electrical conductivity can also be decreased sharply. Consequently, a large figure of merit 0.85 at 623 K can be achieved for 0.7PbTe–0.3Sb2Te3 bulk, which is enhanced by about one time as compared to that of the single-phased PbTe bulk. This large enhancement could be attributed to the lowered carrier concentration and the increased interface scattering in the binary-phased PbTe–Sb2Te3 materials with a mixed morphology.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.