Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T08:01:05.771Z Has data issue: false hasContentIssue false

Large effect of structural variations in the columnar silicon electrode on energy storage capacity and electrode structural integrity in Li-ion cells

Published online by Cambridge University Press:  07 October 2020

B. Vadlamani
Affiliation:
Department of Materials Science and Engineering, The University of Utah, Salt Lake City84112, Utah, USA
M. Jagannathan
Affiliation:
Department of Materials Science and Engineering, The University of Utah, Salt Lake City84112, Utah, USA
J. Palmer
Affiliation:
Department of Materials Science and Engineering, The University of Utah, Salt Lake City84112, Utah, USA
K.S. Ravi Chandran*
Affiliation:
Department of Materials Science and Engineering, The University of Utah, Salt Lake City84112, Utah, USA
*
a)Address all correspondence to this author. e-mail: ravi.chandran@utah.edu
Get access

Abstract

Silicon electrodes with the columnar macroporous structure were investigated to determine the effect of variations in the columnar pore morphology on lithiation and energy storage capacity in Li-ion cells. Several variants of macroporous Si columnar electrodes were electrochemically cycled against the Li reference electrode. The changes in macro-pore size and Si wall thickness of the columnar architecture greatly affected the cyclic Li storage and discharge capacities. A strong correlation of the Li-storage capacity with the ratio of Si wall thickness to pore diameter is found to exist. Specifically, one columnar Si electrode with an optimum macroporous structure exhibited a very high reversible specific capacity of ~1250 mAh/g (total capacity 1.2 mAh/cm2) for over 200 cycles. Electron microscopy revealed that the high reversible Li-storage capacity is due to the macropores accommodating the change in volume of lithiation and providing nearly complete reconstruction of Si walls upon delithiation. The present observations can lead to practical, high-capacity, and damage-resistant Si electrodes for Li-ion batteries.

Type
Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wilson, A.M. and Dahn, J.R.: Lithium insertion in carbons containing nanodispersed silicon. J. Electrochem. Soc. 142, 326 (1995).CrossRefGoogle Scholar
Bourderau, S., Brousse, T., and Schleich, D.M.: Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources 81, 233 (1999).CrossRefGoogle Scholar
Li, H., Huang, X., Chen, L., Wu, Z., and Liang, Y.: A high capacity nano Si composite anode material for lithium rechargeable batteries. Electrochem. Solid-State Lett. 2, 547 (1999).CrossRefGoogle Scholar
Hatchard, T.D. and Dahn, J.R.: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838 (2004).CrossRefGoogle Scholar
Besenhard, J.O., Yang, J., and Winter, M.: Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources 68, 87 (1997).CrossRefGoogle Scholar
Ryu, J.H., Kim, J.W., Sung, Y.-E., and Oh, S.M.: Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7, A306 (2004).CrossRefGoogle Scholar
Lee, K.-L., Jung, J.-Y., Lee, S.-W., Moon, H.-S., and Park, J.-W.: Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. J. Power Sources 129, 270 (2004).CrossRefGoogle Scholar
Maranchi, J.P., Hepp, A.F., and Kumta, P.N.: High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid-State Lett. 6, A198 (2003).CrossRefGoogle Scholar
Chan, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2007).CrossRefGoogle ScholarPubMed
Peng, K., Jie, J., Zhang, W., and Lee, S.-T.: Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 93, 033105 (2008).CrossRefGoogle Scholar
Chan, C.K., Patel, R.N., O'Connell, M.J., Korgel, B.A., and Cui, Y.: Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4, 1443 (2010).CrossRefGoogle ScholarPubMed
Cui, L.-F., Ruffo, R., Chan, C.K., Peng, H., and Cui, Y.: Crystalline-amorphous core−shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491 (2008).CrossRefGoogle Scholar
Cui, L.-F., Yang, Y., Hsu, C.-M., and Cui, Y.: Carbon−silicon core−shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9, 3370 (2009).CrossRefGoogle ScholarPubMed
Ge, M., Fang, X., Rong, J., and Zhou, C.: Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 24, 422001 (2013).CrossRefGoogle ScholarPubMed
Bang, B.M., Lee, J., Kim, H., Cho, J., and Park, S.: High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching. Adv. Energy Mater. 2, 873 (2012).CrossRefGoogle Scholar
Goldman, J.L., Long, B.R., Gewirth, A.A., and Nuzzo, R.G.: Strain anisotropies and self-limiting capacities in single-crystalline 3D silicon microstructures: Models for high energy density lithium-ion battery anodes. Adv. Func. Mater. 21, 2412 (2011).CrossRefGoogle Scholar
Li, G.V., Astrova, E.V., Rumyantsev, A.M., Voronkov, V.B., Parfen'eva, A.V., Tolmachev, V.A., Kulova, T.L., and Skundin, A.M.: Microstructured silicon anodes for lithium-ion batteries. Russ. J. Electrochem. 51, 899 (2015).CrossRefGoogle Scholar
Madou, M.: Fundamentals of Microfabrication (CRC Press, Boca Raton, FL, USA, 2002); pp. 191193.CrossRefGoogle Scholar
Sailor, M.J.: Porous Silicon in Practice (Wiley-VCH, NY, USA, 2007); pp. 1244.Google Scholar
Sun, L., Wang, F., Su, T., and Du, H.: Room-temperature solution synthesis of mesoporous silicon for lithium ion battery anodes. ACS Appl. Mater. Interfaces 9, 40386 (2017).CrossRefGoogle ScholarPubMed
Cook, J.B., Kim, H.-S., Lin, T.C., Robbennolt, S., Detsi, E., Dunn, B.S., and Tolbert, S.H.: Tuning porosity and surface area in mesoporous silicon for application in Li-ion battery electrodes. ACS Appl. Mater. Interfaces 9, 19063 (2017).CrossRefGoogle ScholarPubMed
Zhao, Y., Liu, X., Li, H., Zhai, T., and Zhou, H.: Hierarchical micro/nano porous silicon Li-ion battery anodes. Chem. Commun. 48, 5079 (2012).Google ScholarPubMed
Shin, H.C., Corno, J.A., Gole, J.L., and Liu, M.: Porous silicon negative electrodes for rechargeable lithium batteries. J. Power Sources 139, 314 (2005).CrossRefGoogle Scholar
Thakur, M., Isaacson, M., Sinsabaugh, S.L., Wong, M.S., and Biswal, S.L.: Gold-coated porous silicon films as anodes for lithium ion batteries. J. Power Sources 205, 426 (2012).Google Scholar
Thakur, M., Sinsabaugh, S.L., Isaacson, M.J., Wong, M.S., and Biswal, S.L.: Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Sci. Rep. 2, 795 (2012).CrossRefGoogle ScholarPubMed
Zhu, J., Gladden, C., Liu, N., Cui, Y., and Zhang, X.: Nanoporous silicon networks as anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 15, 440 (2013).CrossRefGoogle ScholarPubMed
Limthongkul, P., Jang, Y.I., Dudney, N.J., and Chiang, Y.-M.: Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51, 1103 (2003).CrossRefGoogle Scholar
Sun, X., Huang, H., Chu, K., and Zhuang, Y.: Anodized macroporous silicon anode for integration of lithium-ion batteries on chips. J. Electron. Mater. 41, 2369 (2012).CrossRefGoogle Scholar
Lee, Y.M., Lee, J.Y., Shim, H.-T., Lee, J.K., and Park, J.-K.: SEI layer formation on amorphous Si thin electrode during precycling. J. Electrochem. Soc. 154, A515 (2007).CrossRefGoogle Scholar
Huggins, R.A.: Energy Storage, 2nd ed. (Springer, NY, USA, 2010); pp. 163164.CrossRefGoogle Scholar
Kang, D., Corno, J.A., Gole, J.L., and Shin, H.: Microstructured nanopore-walled porous silicon as an anode material for rechargeable lithium batteries. J. Electrochem. Soc. 155, A276 (2008).Google Scholar
Ouyang, H., Archer, M., Fauchet, P.M., Ouyang, H., Christophersen, M., Viard, R., Miller, B.L., and Fauchet, P.M.: Macroporous silicon microcavities for macromolecule detection. In Frontiers in Surface Nanophotonics, Andrews, D. L. and Gaburro, Z., eds. (Springer, New York, 2007), pp. 4957.CrossRefGoogle Scholar
Bettotti, P., Gaburro, Z., Negro, L.D., and Pavesi, L.: New progress on p-type macroporous silicon electrodissolution. Mater. Res. Soc. Symp. Proc. 722, 449 (2002).CrossRefGoogle Scholar
Underwood, E.E.: Quantitative Stereology (Addison-Wesley Publishing Company, NY, USA, 1970); pp. 8283.Google Scholar