Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T10:49:18.286Z Has data issue: false hasContentIssue false

Interface structure and formation between gold and trimethylcyclohexane polycarbonate

Published online by Cambridge University Press:  31 January 2011

C. v. Bechtolsheim
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Christian-Albrechts-Universität Kiel, Kaiserstraße 2, D-24143 Kiel, Germany
V. Zaporojtchenko
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Christian-Albrechts-Universität Kiel, Kaiserstraße 2, D-24143 Kiel, Germany
F. Faupel
Affiliation:
Lehrstuhl für Materialverbunde, Technische Fakultät der Christian-Albrechts-Universität Kiel, Kaiserstraße 2, D-24143 Kiel, Germany
Get access

Abstract

This paper presents the results of a systematic investigation of structure and formation of the interface between gold and trimethylcyclohexane polycarbonate, particularly concerning interface evolvement during gold evaporation and the influence of evaporation rate, substrate temperature, and subsequent annealing. The means of investigation were cross-sectional transmission electron microscopy, atomic force microscopy, and x-ray photoelectron spectroscopy. Extensive metal diffusion into the polymer and cluster formation near the interface were observed at deposition rates of the order of one monolayer per minute and below. The penetration depth is strongly temperature dependent. At high evaporation rates metal aggregation at the surface prevents cluster formation inside the polymer. No diffusion into the polymer was observed from metal films deposited at room temperature after extensive annealing at elevated temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Metallized Plastics 1: Fundamental and Applied Aspects, edited by Mittal, K. and Susko, J.R. (Plenum Press, New York, 1989).CrossRefGoogle Scholar
2.Metallized Plastics 2: Fundamental and Applied Aspects, edited by Mittal, K.L. (Plenum Press, New York, 1991).CrossRefGoogle Scholar
3.Metallized Plastics 3: Fundamental and Applied Aspects, edited by Mittal, K.L. (Plenum Press, New York, 1993).Google Scholar
4.Metallized Plastics: Fundamentals and Applications, edited by Mittal, K.L. (Marcel Dekker, New York, 1998).CrossRefGoogle Scholar
5.Metallization of Polymers, edited by Sacher, E., Pireaux, J., and Kowalczyk, S.P. (Am. Chem. Soc. Symp. Ser. 440, Washington, DC, 1990).CrossRefGoogle Scholar
6.Tromp, R.M., LeGoues, F.K., and Ho, P.S., J. Vac. Sci. Technol. A 3, 782785 (1985).CrossRefGoogle Scholar
7.Faupel, F., Willecke, R., Thran, A., Kiene, M., Bechtolsheim, C.v., and Strunskus, T., Defect and Diffusion Forum 143–147, 887 (1997).CrossRefGoogle Scholar
8.Faupel, F., Willecke, R., and Thran, A., Mater. Sci. Eng. R 22, 1 (1998).CrossRefGoogle Scholar
9.Willecke, R. and Faupel, F., J. Polym. Sci. B: Polym. Phys. 35, 10431048 (1997).3.0.CO;2-X>CrossRefGoogle Scholar
10.Willecke, R. and Faupel, F., Macromol. 30(3), 567573 (1997).CrossRefGoogle Scholar
11.Faupel, F., Gupta, D., Silverman, B.D., and Ho, P.S., Appl. Phys. Lett. 55(4), 357359 (1989).CrossRefGoogle Scholar
12.Kovacs, G.J. and Vincett, P.S., J. Colloid Interface Sci. 90(2), 335351 (1982).CrossRefGoogle Scholar
13.Kovacs, G.J., Vincett, P.S., Tremblay, C., and Pundsack, A.L., Thin Solid Films 101, 2140 (1983).CrossRefGoogle Scholar
14.Bartha, J.W., Hahn, P.O., LeGoues, F.K., and Ho, P.S., J. Vac. Sci. Technol. A 3(3), 13901393 (1985).CrossRefGoogle Scholar
15.Meyer, H.M., Anderson, S.G., Atanasoska, Lj., and Weaver, J.H., J. Vac. Sci. Technol. A 6(3), 10021006 (1988).CrossRefGoogle Scholar
16.Strunskus, T., Grunze, M., Kochendoerfer, G., and Wöll, Ch., Langmuir 12, 2712 (1996).CrossRefGoogle Scholar
17.LeGoues, F.K., Silverman, B.D., and Ho, P.S., J. Vac. Sci. Technol. A 6(4), 22002204 (1988).CrossRefGoogle Scholar
18.Kiene, M., Strunskus, T., Peter, R., and Faupel, F., Adv. Mater. 10, 1357 (1998).3.0.CO;2-9>CrossRefGoogle Scholar
19.Thran, A. and Faupel, F., Defect and Diffusion Forum, 143–147, 903 (1997).CrossRefGoogle Scholar
20.Silverman, B.D., Macromolecules 24, 2467 (1991).CrossRefGoogle Scholar
21.Bechtolsheim, C.v., Ph.D. Thesis, University of Kiel (1998).Google Scholar
22.Zaporojtchenko, V., Strunskus, T., Behnke, K., Bechtolsheim, C.v., Kiene, M., and Faupel, F., Adhesion, J. Sci. Technol. (1998, in press).Google Scholar
23.Thran, A., Kiene, M., Zaporojtchenko, V., Faupel, F., Phys. Rev. Lett. 82, 1903 (1999).CrossRefGoogle Scholar
24.Weast, R.C. and Astle, M.J., CRC Handbook of Chemistry and Physics (CRC Press Inc., Boca Raton, FL, 1981).Google Scholar
25.Zaporojtchenko, V., Behnke, K., Thran, A., Strunskus, T., and Faupel, F., Appl. Surf. Sci. 144–145, 355 (1999).CrossRefGoogle Scholar
26.Philibert, J., Atom Movements Diffusion and Mass Transport in Solids (Les Editions de Physique, Les Ulis Cedex, 1991).Google Scholar
27.Jean, Y., Zhang, R., Cao, H., Yuan, J-P., and Huang, C-M., Phys. Rev. B 56(14), R8459–R8462 (1997).CrossRefGoogle Scholar
28.Keddie, J.L., Jones, R.A.L, and Cory, R.A., Europhys. Lett. 21(1), 5964 (1994).CrossRefGoogle Scholar
29.Forrest, J.A., Svanberg, C., Révész, K., Rodahl, M., Torell, L.M., and Kasemo, B., Phys. Rev. E 58, R1226 (1998).CrossRefGoogle Scholar
30.Kajiyama, T., Tanaka, K., Satomi, N., Takahara, A., Macromolecules 31, 5150 (1998).CrossRefGoogle Scholar
31.Bechtolsheim, C.v., Zaporojtchenko, V., Faupel, F., Appl. Surf. Sci. (in press).Google Scholar