Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T01:58:56.110Z Has data issue: false hasContentIssue false

Influences of vacancy defects on buckling behaviors of open-tip carbon nanocones

Published online by Cambridge University Press:  23 March 2015

Ming-Liang Liao*
Affiliation:
Department of Aircraft Engineering, Air Force Institute of Technology, Kaohsiung 820, Taiwan
*
a)Address all correspondence to this author. e-mail: minsliao@gmail.com
Get access

Abstract

This study investigated influences of vacancy defects on buckling behaviors of open-tip carbon nanocones (CNCs) by molecular dynamics simulations. Effects of vacancy location and temperature on the buckling behaviors were examined in the study. Some interesting findings were attained from the investigations. It was noticed that the CNC with an upper vacancy has comparable degradation in the critical strain and in the critical load with the CNC with a middle vacancy, whereas the CNC with a lower vacancy has lower degradation in the antibuckling ability than the above two CNCs. The antibuckling ability of the CNCs reduces with the growth of the temperature. This temperature effect is more apparent in the perfect CNC than in the vacancy-defect CNCs. It was also observed that the degradation in the antibuckling ability is obvious at a lower temperature, but it decreases as the temperature grows. Besides, all the CNCs (including the perfect and the vacancy-defect CNCs) exhibited a shrinking/swelling buckling mode shape at the studied temperatures. Existence of the vacancies did not alter the buckling mode shape of the CNCs.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tagmatarchis, N. ed.: Advances in Carbon Nanomaterials: Science and Applications (Pan Stanford Publishing, Singapore, 2012).CrossRefGoogle Scholar
Ge, M. and Sattler, K.: Observation of fullerene cones. Chem. Phys. Lett. 220, 192196 (1994).CrossRefGoogle Scholar
Krishnan, A., Dujardin, E., Treacy, M.M.J., Hugdhl, J., Lynum, S., and Ebbesen, T.W.: Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451454 (1997).CrossRefGoogle Scholar
Naess, S.N., Elgsaeter, A., Helgesen, G., and Knudsen, K.D.: Carbon nanocones: Wall structure and morphology. Sci. Technol. Adv. Mater. 10, 065002 (2009).CrossRefGoogle ScholarPubMed
Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., and Taskahashi, K.: Nanoaggregates of single-walled graphitic carbon nanohorns. Chem. Phys. Lett. 309, 165170 (1999).CrossRefGoogle Scholar
Gogotsi, Y., Dimovski, S., and Libera, J.A.: Conical crystals of graphite. Carbon 40, 22632267 (2002).CrossRefGoogle Scholar
Zhang, G., Jiang, X., and Wang, E.: Tubular graphite cones. Science 300, 472474 (2003).CrossRefGoogle ScholarPubMed
Tsakadze, Z.L., Levchenko, I., Ostrikov, K., and Su, X.: Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon 45, 20222030 (2007).CrossRefGoogle Scholar
Levchenko, I., Ostrikov, K., Long, J.D., and Xu, S.: Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones. Appl. Phys. Lett. 91, 113115 (2007).CrossRefGoogle Scholar
Terrones, H., Hayashi, T., Muñoz-Navia, M., Terrones, M., Kim, Y.A., Grobert, N., Kamalakaran, R., Dorantes-Davila, J., Escudero, R., Dresselhaus, M.S., and Endo, M.: Graphitic cones in palladium catalysed carbon nanofibers. Chem. Phys. Lett. 343, 241250 (2001).CrossRefGoogle Scholar
Endo, M., Kim, Y.A., Hayashi, T., Fukai, Y., Oshida, K., Terrones, M., Yanagisawa, T., Higaki, S., and Dresselhaus, M.S.: Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80, 1267 (2002).CrossRefGoogle Scholar
Ekşioğlu, B. and Nadarajah, A.: Structural analysis of conical carbon nanofibers. Carbon 44, 360373 (2006).CrossRefGoogle Scholar
Chen, I.C., Chen, L.H., Gapin, A., Jin, S., Yuan, L., and Liou, S.H.: Iron-platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging. Nanotechnology 19, 075501 (2008).CrossRefGoogle ScholarPubMed
Sripirom, J., Noor, S., Koehler, U., and Schulte, A.: Easily made and handled carbon nanocones for scanning tunneling microscopy and electroanalysis. Carbon 49, 24022412 (2011).CrossRefGoogle Scholar
Hsieh, J.Y., Chen, C., Chen, J.L., Chen, C.I., and Hwang, C.C.: The nanoindentation of a copper substrate by single-walled carbon nanocone tips: A molecular dynamics study. Nanotechnology 20, 095709 (2009).CrossRefGoogle Scholar
Yu, S.S. and Zheng, W.T.: Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale 2, 10691082 (2010).CrossRefGoogle Scholar
Adisa, O.O., Cox, B.J., and Hill, J.M.: Open carbon nanocones as candidates for gas storage. J. Phys. Chem. C 115, 2452824533 (2011).CrossRefGoogle Scholar
Liao, M.L.: A study on hydrogen adsorption behaviors of open-tip carbon nanocones. J. Nanopart. Res. 14, 837 (2012).CrossRefGoogle Scholar
Yang, N., Zhang, G., and Li, B.: Carbon nanocone: A promising thermal rectifier. Appl. Phys. Lett. 93, 243111 (2008).CrossRefGoogle Scholar
Jordan, S.P. and Crespi, V.H.: Theory of carbon nanocones: Mechanical chiral inversion of a micron-scale three-dimensional object. Phys. Rev. Lett. 93, 255504 (2004).CrossRefGoogle ScholarPubMed
Tsai, P.C. and Fang, T.H.: A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones. Nanotechnology 18, 105702 (2007).CrossRefGoogle Scholar
Liew, K.M., Wei, J.X., and He, X.Q.: Carbon nanocones under compression: Buckling and post-buckling behaviors. Phys. Rev. B 75, 195435 (2007).CrossRefGoogle Scholar
Wei, J.X., Liew, K.M., and He, X.Q.: Mechanical properties of carbon nanocones. Appl. Phys. Lett. 91, 261906 (2007).CrossRefGoogle Scholar
Liao, M.L., Cheng, C.H., and Lin, Y.P.: Tensile and compressive behaviors of open-tip carbon nanocones under axial strains. J. Mater. Res. 26, 15771584 (2011).CrossRefGoogle Scholar
Fakhrabadi, M.M.S., Khani, N., Omidvar, R., and Rastgoo, A.: Investigation of elastic and buckling properties of carbon nanocones using molecular mechanics approach. Comput. Mater. Sci. 61, 248256 (2012).CrossRefGoogle Scholar
Fakhrabadi, M.M.S., Dadashzadeh, B., Norouzifard, V., and Allahverdizadeh, A.: Application of molecular dynamics in mechanical characterization of carbon nanocones. J. Comput. Theor. Nanosci. 10, 19211927 (2013).CrossRefGoogle Scholar
Yan, J.W., Liew, K.M., and He, L.H.: A mesh-free computational framework for predicting buckling behaviors of single-walled carbon nanocones under axial compression based on the moving kriging interpolation. Comput. Methods Appl. Mech. Eng. 247, 103112 (2012).CrossRefGoogle Scholar
Yan, J.W., Liew, K.M., and He, L.H.: Buckling and post-buckling of single-wall carbon nanocones upon bending. Compos. Struct. 106, 793798 (2013).CrossRefGoogle Scholar
Liao, M.L.: Buckling behaviors of open-tip carbon nanocones at elevated temperatures. Appl. Phys. A 117, 11091118 (2014).CrossRefGoogle Scholar
Andrews, R., Jacques, D., Qian, D., and Dickey, E.C.: Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 39, 16811687 (2001).CrossRefGoogle Scholar
Pierard, N., Fonseca, A., Konya, Z., Willems, I., Van Tendeloo, G., and Nagy, J.B.: Production of short carbon nanotubes with open tips by ball milling. Chem. Phys. Lett. 335, 18 (2001).CrossRefGoogle Scholar
Ni, B. and Sinnott, S.B.: Chemical functionalization of carbon nanotubes through energetic radical collisions. Phys. Rev. B 61, R16343 (2000).CrossRefGoogle Scholar
Cooper, C.A., Cohen, S.R., Barber, A.H., and Wagner, H.D.: Detachment of nanotubes from a polymer matrix. Appl. Phys. Lett. 81, 38733875 (2002).CrossRefGoogle Scholar
Sammalkorpi, M., Krasheninnikov, A., Kuronen, A., Nordlund, K., and Kaski, K.: Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B 70, 245416 (2004).CrossRefGoogle Scholar
Xin, H., Han, Q., and Yao, X.H.: Buckling and axially compressive properties of perfect and defective single-walled carbon nanotubes. Carbon 45, 24862495 (2007).CrossRefGoogle Scholar
Eftekhari, M., Mohammadi, S., and Khoei, A.R.: Effect of defects on the local shell buckling and post-buckling behavior of single and multi-walled carbon nanotubes. Comput. Mater. Sci. 79, 736744 (2013).CrossRefGoogle Scholar
Sharma, S., Chandra, R., Kumar, P., and Kumar, N.: Effect of Stone-Wales and vacancy defects on elastic moduli of carbon nanotubes and their composites using molecular dynamics simulation. Comput. Mater. Sci. 86, 18 (2014).CrossRefGoogle Scholar
Tersoff, J.: New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632635 (1986).CrossRefGoogle ScholarPubMed
Tersoff, J.: Modeling solid-state chemistry: Interatomic potentials for multi-component systems. Phys. Rev. B 39, 55665568 (1989).CrossRefGoogle Scholar
Rapaport, D.C.: The Art of Molecular Dynamics Simulations (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
Haile, J.M.: Molecular Dynamics Simulation: Elementary Method (John Wiley & Sons, New York, 1997).Google Scholar