Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T00:27:40.108Z Has data issue: false hasContentIssue false

Influence of casting temperature on the thermal stability of Cu- and Zr-based metallic glasses: Theoretical analysis and experiments

Published online by Cambridge University Press:  31 January 2011

Z.W. Zhu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China; and Faculty of Engineering and Surveying, The University of Southern Queensland, Toowoomba, Queensland 4350, Australia
H.F. Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
H. Wang
Affiliation:
Faculty of Engineering and Surveying, The University of Southern Queensland, Toowoomba, Queensland 4350, Australia
B.Z. Ding
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
Z.Q. Hu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: hfzhang@imr.ac.cn
Get access

Abstract

Influence of casting temperature on the thermal stability of Cu- and Zr-based metallic glasses (MGs) was analyzed based on the monomer-cluster structural model using the Johnson–Mehl–Avrami (JMA) equation. The result indicates that increasing the casting temperature can enhance the thermal stability of MGs. It is suggested that it be attributed to the decrease in the amount of the local ordering clusters induced by the elevating casting temperature. The prediction is confirmed by continuous heating transformation diagrams constructed for the Cu- and Zr-amorphous samples obtained under different casting temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999CrossRefGoogle Scholar
2Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
3Wang, W.H., Dong, C., Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 2004CrossRefGoogle Scholar
4Busch, R., Schroers, J., Wang, W.H.: Thermodynamics and kinetics of bulk metallic glass. MRS Bull. 32, 620 2007CrossRefGoogle Scholar
5Chen, H.S.: Correlation between the thermal stability and activation energy of crystallization in metallic glasses. Appl. Phys. Lett. 29, 12 1976CrossRefGoogle Scholar
6Wu, T.W., Spaepen, F.: The relation between enbrittlement and structural relaxation of an amorphous metal. Philos. Mag. B 61, 739 1990CrossRefGoogle Scholar
7Niikura, A., Tsai, A.P., Inoue, A., Masumoto, T.: Chemical structural relaxation-induced embrittlement in amorphous Mg–Cu–Y alloys. J. Non-Cryst. Solids 159, 229 1993CrossRefGoogle Scholar
8Fan, C., Louzguine, D.V., Li, C., Inoue, A.: Nanocrystalline composites with high strength obtained in Zr–Ti–Ni–Cu–Al bulk amorphous alloys. Appl. Phys. Lett. 75, 340 1999CrossRefGoogle Scholar
9Fan, C., Li, C., Inoue, A., Haas, V.: Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys. Phys. Rev. B 61, R3761 2000CrossRefGoogle Scholar
10Schneider, S., Bracchi, A., Samwer, K., Seibt, M., Thiyagarajan, P.: Microstructure-controlled magnetic properties of the bulk glass-forming alloy Nd60Fe30Al10. Appl. Phys. Lett. 80, 1749 2002CrossRefGoogle Scholar
11Kim, Y.C., Na, J.H., Park, J.M., Kim, D.H., Lee, J.K., Kim, W.T.: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 2003CrossRefGoogle Scholar
12Chu, J.P., Lo, C-T., Fang, Y-K., Han, B-S.: On annealing-induced amorphization and anisotropy in a ferromagnetic Fe-based film: A magnetic and property study. Appl. Phys. Lett. 88, 012510 2006CrossRefGoogle Scholar
13Dong, W., Zhang, H., Cai, J., Sun, W., Wang, A., Li, H., Hu, Z.: Enhanced plasticity in a Zr-based bulk metallic glass containing nanocrystalline precipitates. J. Alloys Compd. 425, L1 2006CrossRefGoogle Scholar
14Kim, K.B., Das, J., Venkataraman, S., Yi, S., Eckert, J.: Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5Zr47.5Al5 bulk metallic glasses. Appl. Phys. Lett. 89, 071908 2006CrossRefGoogle Scholar
15Zhu, Z.W., Zhang, H.F., Sun, W.S., Ding, B.Z., Hu, Z.Q.: Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zr50. Scr. Mater. 54, 1145 2006CrossRefGoogle Scholar
16Hajlaoui, K., Yavari, A.R., LeMoulec, A., Botta, W.J., Vaughan, F.G., Das, J., Greer, A.L., Kvick, A.: Plasticity induced by nanoparticle dispersions in bulk metallic glasses. J. Non-Cryst. Solids 353, 327 2007CrossRefGoogle Scholar
17Qiang, J.B., Zhang, W., Xie, G.Q., Inoue, A.: Unusual room temperature ductility of a Zr-based bulk metallic glass containing nanoparticles. Appl. Phys. Lett. 90, 231907 2007CrossRefGoogle Scholar
18Zhu, Z.W., Zheng, S.J., Zhang, H.F., Ding, B.Z., Hu, Z.Q., Liaw, P.K., Wang, Y.D., Ren, Y.: Plasticity of bulk metallic glasses improved by controlling the solidification condition. J. Mater. Res. 23, 941 2008CrossRefGoogle Scholar
19Mitrovic, N., Roth, S., Eckert, J.: Kinetics of the glass-transition and crystallization process of Fe72−xNbxAl5Ga2P11C6B4 (x = 0, 2) metallic glasses. Appl. Phys. Lett. 78, 2145 2001CrossRefGoogle Scholar
20Louzguine, D.V., Inoue, A.: Evaluation of the thermal stability of a Cu60Hf25Ti15 metallic glass. Appl. Phys. Lett. 81, 2561 2002CrossRefGoogle Scholar
21Louzguine, D.V., Inoue, A.: Comparison of the long-term thermal stability of various metallic glasses under continuous heating. Scr. Mater. 47, 887 2002CrossRefGoogle Scholar
22Xia, L., Ding, D., Shan, S.T., Dong, Y.D.: Evaluation of the thermal stability of Nd60Al20Co20 bulk metallic glass. Appl. Phys. Lett. 90, 111903 2007CrossRefGoogle Scholar
23McCoy, B.J.: Cluster kinetics for glass forming materials. J. Phys. Chem. Solids 63, 1967 2002CrossRefGoogle Scholar
24Fredriksson, H., Fredriksson, E.: A model of liquid metals and its relation to the solidification process. Mater. Sci. Eng., A 413–414, 455 2005CrossRefGoogle Scholar
25Henderson, D.W.: Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J. Non-Cryst. Solids 30, 301 1978CrossRefGoogle Scholar
26Koster, U., Meinhardt, J., Roos, S., Liebertz, H.: Formation of quasicrystals in bulk glass forming Zr–Cu–Ni–Al alloys. Appl. Phys. Lett. 69, 179 1996CrossRefGoogle Scholar
27Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 2006CrossRefGoogle ScholarPubMed
28Wang, H.R., Ye, Y.F., Shi, Z.Q., Teng, X.Y., Min, G.H.: Crystallization processes in amorphous Zr54Cu46 alloy. J. Non-Cryst. Solids 311, 36 2002CrossRefGoogle Scholar
29Ragone, D.V.: Thermodynamics of Materials John Wiley Sons New York 1995Google Scholar
30Chen, H.S.: A method for evaluating viscosities of metallic glasses from the rates of thermal transformations. J. Non-Cryst. Solids 27, 257 1978CrossRefGoogle Scholar
31Hoyer, W., Jodicke, R.: Short-range and medium-range order in liquid Au–Ge alloys. J. Non-Cryst. Solids 192–193, 102 1995CrossRefGoogle Scholar
32McCoy, B.J.: Distribution kinetics modeling of nucleation, growth, and aggregation processes. IEC Res. 40, 5147 2001Google Scholar
33Mattern, N., Kuhn, U., Eckert, J.: Structural behavior of amorphous and liquid metallic alloys at elevated temperatures. J. Non-Cryst. Solids 353, 3327 2007CrossRefGoogle Scholar
34Yu, P., Bai, H.Y., Tang, M.B., Wang, W.L.: Excellent glass-forming ability in simple Cu50Zr50-based alloys. J. Non-Cryst. Solids 351, 1328 2005CrossRefGoogle Scholar
35Zhu, Z.W., Zhang, H.F., Ding, B.Z., Hu, Z.Q.: Glass forming ability, mechanical property microstructure of Cu–Zr–Ti–Y alloys under different casting temperature. (unpublished)Google Scholar
36Xia, M., Zhang, S., Li, J., Ma, C.: Thermal stability and its prediction of bulk metallic glass systems. Appl. Phys. Lett. 88, 261913 2006CrossRefGoogle Scholar