Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T13:45:11.941Z Has data issue: false hasContentIssue false

Indentation-induced deformation at ultramicroscopic and macroscopic contacts

Published online by Cambridge University Press:  03 March 2011

Jeremy Thurn
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Robert F. Cook*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
*
b)Address all correspondence to this author. e-mail: rfc@cems.umn.edu
Get access

Abstract

Depth-sensing indentation at ultramicroscopic and macroscopic contacts (“nanoindentation” and “macroindentation,” respectively) was performed on four brittle materials (soda-lime glass, alumina titanium carbide, sapphire, and silicon) and the resulting load–displacement traces examined to provide insight to the elastic and plastic deformation scaling with contact size. The load–displacement traces are examined in terms of the unloading stiffness, the energies deposited during loading and recovered on unloading, and the effect of the indenter tip radius on the loading curve. The results of the analyses show that the elastic and plastic deformation during loading and unloading is invariant with the scale of the contact, and the unloading curve is best described by neither a conical tip nor a paraboloid of revolution, but of some compromise.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fröhlich, F., Grau, P. and Grellmann, W., Phys. Status Solidi 42 79 (1977).CrossRefGoogle Scholar
2.Pethica, J.B., Hutchings, R. and Oliver, W.C., Philos. Mag. A. 48 593 (1983).CrossRefGoogle Scholar
3.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 601 (1986).CrossRefGoogle Scholar
4.Cook, R.F. and Pharr, G.M., J. Am. Ceram. Soc. 73 787 (1990).CrossRefGoogle Scholar
5.Page, T.F., Oliver, W.C. and McHargue, C.J., J. Mater. Res. 7 450 (1992).CrossRefGoogle Scholar
6.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
7.Pharr, G.M., Harding, D.S. and Oliver, W.C. in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, edited by Nastasi, M., Parkin, D.M., and Gleiter, H. (Kluwer Academic, Dordrecht, 1993), p. 449.CrossRefGoogle Scholar
8.Cook, R.F. and Pharr, G.M., J. Hard Mater. 5 179 (1994).Google Scholar
9.Briscoe, B.J. and Sebastian, K.S., Proc. R. Soc. (London) A 452 439 (1996).Google Scholar
10.Menčík, J., Munz, D., Quandt, E., Weppelmann, E.R. and Swain, M.V., J. Mater. Res. 12 2475 (1997).CrossRefGoogle Scholar
11.Lim, Y.Y. and Chaudhri, M.M., Philos. Mag. A. 79 2979 (1999).CrossRefGoogle Scholar
12.Tsui, T.Y. and Pharr, G.M., J. Mater. Res. 14 292 (1999).CrossRefGoogle Scholar
13.Tsui, T.Y., Vlassak, J. and Nix, W.D., J. Mater. Res. 14 2196 (1999).CrossRefGoogle Scholar
14.Tsui, T.Y., Vlassak, J. and Nix, W.D., J. Mater. Res. 14 2204 (1999).CrossRefGoogle Scholar
15.Saha, R. and Nix, W.D., Acta Mater. 50 23 (2002).CrossRefGoogle Scholar
16.Lawn, B.R. and Howes, V.R., J. Mater. Sci. 16 2745 (1981).CrossRefGoogle Scholar
17.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951), pp. 8–11, 112–113.Google Scholar
18.Bückle, H., Metall. Rev. 4 49 (1959).Google Scholar
19.Stilwell, N.A. and Tabor, D., Phys. Proc. Soc. Lond. 78 169 (1961).CrossRefGoogle Scholar
20.Thurn, J., Morris, D.J. and Cook, R.F., J. Mater. Res. 17 2679 (2002).CrossRefGoogle Scholar
21.Love, A.E.H., Q. J. Math. 10 161 (1939).CrossRefGoogle Scholar
22.Sneddon, I.N., Int. J. Eng. Sci. 3 47 (1965).CrossRefGoogle Scholar
23.Pharr, G.M., Oliver, W.C. and Brotzen, F.R., J. Mater. Res. 7 613 (1992).CrossRefGoogle Scholar
24.Sakai, M., Acta Metall. Mater. 41 1751 (1993).CrossRefGoogle Scholar
25.Saunders, S.R.J., Tanaka, K., Akiyama, Y. and Yoshizaki, H., Philos. Mag. A. 74 1097 (1996).CrossRefGoogle Scholar
26.Zeng, K. and Chiu, C-H., Acta Mater. 49 3539 (2001).CrossRefGoogle Scholar
27.Cheng, Y-T. and Cheng, C-M., J. Mater. Res. 13 1059 (1998).CrossRefGoogle Scholar
28.Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B., J. Am. Ceram. Soc. 64 533 (1981).CrossRefGoogle Scholar
29.Wachtman, J.B. Jr., Tefft, W.E., Lam, D.G. Jr. and Stinchfield, R.P., J. Res. Natl. Bur. Stand. A: Phys. Chem. 64 213 (1960).CrossRefGoogle Scholar
30.Brantley, W.A., J. Appl. Phys. 44 534 (1973).CrossRefGoogle Scholar
31. Product Bulletin (Minnesota Mining and Manufacturing Company, St. Paul, MN, 1987).Google Scholar
32.Goldstein, A. and Singurindi, A., J. Am. Ceram. Soc. 83 1530 (2000).CrossRefGoogle Scholar
33.Thurn, J. and Cook, R.F., J. Mater. Res. 17 1143 (2002).CrossRefGoogle Scholar