Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T00:43:18.058Z Has data issue: false hasContentIssue false

In situ High-resolution Electron Microscope Observation of Phase Change in Nanometer-sized Alloy Particles

Published online by Cambridge University Press:  01 July 2005

Jung-Goo Lee*
Affiliation:
Research Center for Ultra High Voltage Electron Microscopy, Osaka University, Suita, Osaka 565-0871, Japan
Hirotaro Mori
Affiliation:
Research Center for Ultra High Voltage Electron Microscopy, Osaka University, Suita, Osaka 565-0871, Japan
Hidehiro Yasuda
Affiliation:
Department of Mechanical Engineering, Kobe University, Nada, Kobe 657-8501, Japan
*
a)Address all correspondence to this author. e-mail: jg-lee@uhvem.osaka-u.ac.jp
Get access

Abstract

From the study of alloy phase formation in nanometer-sized particles by in situ transmission electron microscopy, it is revealed that not only the surface energy but also the interface energy of an interface between two different phases (solid–solid or solid–liquid) significantly changes the phase equilibrium of nanometer-sized particles. These energies result in large suppression of the eutectic point, structural instability, and unique solid/liquid two-phase structures in isolated nanometer-sized alloy particles. A theoretical study based on thermodynamics, which is modified in such a manner that Gibbs free energies for bulk materials were modified by taking factors affecting the phase equilibrium of nanometer-sized alloy particles into consideration, was proved useful to evaluate the results obtained from experiments.

Type
Reviews
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Halperin, W.P.: Quantum size effects in metal particles. Rev. Mod. Phys. 58, 533 (1986).CrossRefGoogle Scholar
2Andres, R.P., Averback, R.S., Brown, W.L., Brus, L.E., III, W.A. Goddard, Kaldor, A., Louie, S.G., Moscovits, M., Peercy, P.S., Riley, S.J., Siegel, R.W., Spaepen, F. and Wang, Y.: Research opportunities on clusters and cluster-assembled materials. J. Mater. Res. 4, 704 (1989).CrossRefGoogle Scholar
3Takayanagi, K., Tanishiro, Y., Takahashi, S. and Takahashi, M.: Structure analysis of Si(111)–7 × 7 reconstructed surface by transmission electron diffraction. Surf. Sci. 164, 367 (1985).CrossRefGoogle Scholar
4Perebeinos, V., Chan, S-W. and Zhang, F.: ‘Madelung model’ predition for dependence of lattice parameter on nanocrystal size. Solid State Commun. 123, 296 (2002).CrossRefGoogle Scholar
5Yokozeki, A. and Stein, G.: A metal cluster generator for gas-phase electron diffraction and its application to bismuth, lead, and indium. J. Appl. Phys. 49, 2224 (1978).CrossRefGoogle Scholar
6Tsunekawa, S., Ito, S. and Kawazoe, T.: Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles. Nano Lett. 3, 871 (2003).CrossRefGoogle Scholar
7Sambles, J.R.: An electron microscope study of evaporating small particles. Proc. R. Soc. London A 324, 339 (1971).Google Scholar
8Buffat, Ph. and Borel, J-P.: Size effect on the melting temperature of gold particles. Phys. Rev. A. 13, 2287 (1976).CrossRefGoogle Scholar
9Allen, G.L., Bayles, R.A., Gile, W.W. and Jesser, W.A.: Small particle melting of pure metals. Thin Solid Films 144, 297 (1986).CrossRefGoogle Scholar
10Tanaka, T. and Hara, S.: Thermodynamic evaluation of binary phase diagrams of small particles system. Z. Metallkd. 92, 467 (2001).Google Scholar
11Wautelet, M., Dauchot, J.P. and Hecq, M.: Phase diagrams of small particles of binary systems. Nanotechnology 11, 6 (2002).CrossRefGoogle Scholar
12Shirinyan, A.S. and Gusak, A.M.: Phase diagrams of decomposing nanoalloys. Philos. Mag. 84, 579 (2004).CrossRefGoogle Scholar
13Allen, G.L. and Jesser, W.A.: The structure and melting character of sub-micron In-Sn and Bi-Sn particles. J. Cryst. Growth 70, 546 (1984).CrossRefGoogle Scholar
14Jesser, W.A., Shiflet, G.J., Allen, G.L. and Crawford, J.L.: Equilibrium phase diagrams of isolated nano-phase. Mater. Res. Innovat. 2, 211 (1999).CrossRefGoogle Scholar
15Mori, H., Lee, J-G. and Yasuda, H. In-situ TEM observation of alloying process in isolated nanometer-sized particles, in Nano and Microstructural Design of Advanced Materials, edited by Meyers, M., Ritchie, R.O., and Sarikaya, M. (Elsevier, UK 2003), pp. 4959.CrossRefGoogle Scholar
16Kamino, T. and Saka, H.: A newly developed high-resolution hot stage and its application to materials characterization. Microsc. Microanal. Microstruct. 4, 127 (1993).CrossRefGoogle Scholar
17Lee, J-G., Mori, H. and Yasuda, H.: Alloy phase formation in nanometer-sized particles in the In–Sn system. Phys. Rev. B 65, 132106 (2002).CrossRefGoogle Scholar
18Lee, J-G. and Mori, H.: Particle-size dependence of alloy phase formation in isolated particles in the In–Sn system. J. Vac. Sci. Technol. A 21, 31 (2003).CrossRefGoogle Scholar
19Mori, H. and Yasuda, H.: Alloy phase formation in nanometer-sized Au–Sn particles. Scripta Mater. 44, 1987 (2001).CrossRefGoogle Scholar
20Lee, J-G. and Mori, H.: In situ HREM study on the structural in stability of isolated nanometer-sized alloy particles in the Sn–Bi system. J. Electron. Micros. 52, 57 (2003).CrossRefGoogle Scholar
21Lee, J-G. and Mori, H.: In situ observation of alloy phase formation in nanometer-sized particles in the Sn–Bi system. Philos. Mag. 84, 2675 (2004).CrossRefGoogle Scholar
22Hagege, S. and Dahmen, U.: Morphology, structure and thermal behaviour of small eutectic Pb-Cd inclusions in aluminium. Philos. Mag. Lett. 74, 259 (1996).CrossRefGoogle Scholar
23Massalski, T.B., Murray, J.L., Bennett, L.H. and Baker, H.: Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986).Google Scholar
24Iijima, S. and Ichihashi, T.: Structural instability of ultrafine particles of metals. Phys. Rev. Lett. 56, 616 (1986).CrossRefGoogle ScholarPubMed
25Iijima, S. Some experiments on structural instability of small particles of metals, in Microclusters, edited by Sugano, S., Nishina, Y., and Ohnishi, S. (Springer-Verlag, Berlin, Heidelberg, Germany, 1987), p. 186.CrossRefGoogle Scholar
26Ajayan, P.M. and Marks, L.D.: Quasimelting and phases of small particles. Phys. Rev. Lett. 60, 585 (1988).CrossRefGoogle ScholarPubMed
27Ajayan, P.M. and Marks, L.D.: Experimental evidence for quasimelting in small particles. Phys. Rev. Lett. 63, 279 (1989).CrossRefGoogle ScholarPubMed
28Mitome, M., Tanishiro, Y. and Takayanagi, K.: On the structure and stability of small metal particles. Z. Phys. D 12, 45 (1989).CrossRefGoogle Scholar
29Lee, J-G. Alloy phase formation in isolated nanometer-sized particles in tin-based alloy systems. Ph.D. Thesis, Osaka University, Osaka, Japan (2002).CrossRefGoogle Scholar
30Lee, J-G., Mori, H. and Yasuda, H.: In situ observation of a fluid amorphous phase formed in isolated nanometer-sized particles in the Sn–Bi system. Phys. Rev. B 66, 012105 (2002).CrossRefGoogle Scholar
31 ThermoCalc thermodynamic database (software) Version L, (Stockholm Royal Institute, Stockholm, Sweden, 1998).Google Scholar
32Yasuda, H., Mitsuishi, K. and Mori, H.: Particle-size dependence of phase stability and amorphouslike phase formation in nanometer-sized Au-Sn alloy particles. Phys. Rev. B 64, 094101 (2001).CrossRefGoogle Scholar
33Lee, J-G. and Mori, H.: Solid/liquid two-phase structures in isolated nanometer-sized alloy particles. Phys. Rev. B 70, 144105 (2004).CrossRefGoogle Scholar
34Mori, H. and Yasuda, H.: Alloy phase formation in nanometer-sized particles. Mater. Sci. Eng. A 312, 99 (2001).CrossRefGoogle Scholar
35Lee, J-G. and Mori, H. In-situ TEM observation of crystalline-to-liquid phase change in nanometer-sized alloy particles, in Surfaces and Interfaces in Nanostructured Materials and Trends in LIGA, Miniaturization, and Nanoscale Materials, edited by Mukhopadhyay, S.M., Seal, S., Dahotre, N., Agarwal, A., Smugeresky, J.E., and Moody, N. (TMS2004 Symp. Proc., TMS, Warrendale, PA, 2004), p. 3.Google Scholar
36Murr, L.E.: Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, MA, 1975).Google Scholar
37Iida, T. and Guthrie, R.I.L.: The Physical Properties of Liquid Metals (Clarendon Press, Oxford, U.K., 1988).Google Scholar
38Tyson, W.R. and Miller, W.A.: Surface free energies of solid metals. Surf. Sci. 62, 267 (1977).CrossRefGoogle Scholar
39Lee, J-G. and Mori, H. (unpublished).Google Scholar