Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T00:02:52.606Z Has data issue: false hasContentIssue false

Hydrothermal zinc oxide nanowire growth with different zinc salts

Published online by Cambridge University Press:  02 August 2012

Mehmet Can Akgun
Affiliation:
Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
Aysegul Afal
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
Husnu Emrah Unalan*
Affiliation:
Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey; and Center for Solar Energy Research and Applications, Middle East Technical University, Ankara 06800, Turkey
*
a)Address all correspondence to this author. e-mail: unalan@metu.edu.tr
Get access

Abstract

The effect of the use of different zinc salts as zinc sources during hydrothermal growth of zinc oxide nanowires was systematically investigated. Change in the temperature, pH, and transmittance of the growth solutions prepared with three different zinc salts was monitored and used to provide a broad explanation to the effect of the salt. In addition to conventional heating process, microwave heating of the growth solutions was also performed, and differences in the ZnO nanowires synthesized through both heating methods were examined. It was found that ionization of zinc in growth solutions is influencing the formation of ZnO nanowires leading to growth with different aspect ratios, and zinc acetate dihydrate salt allows the synthesis of nanowires with the highest aspect ratio.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).CrossRefGoogle ScholarPubMed
2.Li, C., Zhang, Y., Mann, M., Hiralal, P., Unalan, H.E., Lei, W., Wang, B.P., Chu, D.P., Pribat, D., Amaratunga, G.A.J., and Milne, W.I.: Stable, self-ballasting field emission from zinc oxide nanowires grown on an array of vertically aligned carbon nanofibers. Appl. Phys. Lett. 96, 143114 (2010).CrossRefGoogle Scholar
3.Zhu, Y.W., Zhang, H.Z., Sun, X.C., Feng, S.Q., Xu, J., Zhao, Q., Xiang, B., Wang, R.M., and Yu, D.P.: Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144 (2003).CrossRefGoogle Scholar
4.Santra, S., Guha, P.K., Ali, S.Z., Hiralal, P., Unalan, H.E., Covington, J.A., Amaratunga, G.A.J., Milne, W.I., Gardner, J.W., and Udrea, F.: ZnO nanowires grown on SOI CMOS substrate for ethanol sensing. Sens. Actuators, B 146, 559565 (2010).CrossRefGoogle Scholar
5.Wang, X., Summers, C.J., and Wang, Z.L.: Growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4, 423426 (2004).CrossRefGoogle ScholarPubMed
6.Li, F.M., Hsieh, G.W., Dalal, S., Newton, M.C., Stott, J.E., Hiralal, P., Nathan, A., Warburton, P.A., Unalan, H.E., Beecher, P., Flewitt, A.J., Robinson, I., Amaratunga, G.A.J., and Milne, W.I.: Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors. IEEE Trans. Electron. Dev. 55, 30013011 (2008).CrossRefGoogle Scholar
7.Law, M., Greene, L.E., Johnson, J.C., Saykally, R., and Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455459 (2005).CrossRefGoogle ScholarPubMed
8.Unalan, H.E., Wei, D., Suzuki, K., Dalal, S., Hiralal, P., Matsumoto, H., Imaizumi, S., Minagawa, M., Tanioka, A., Flewitt, A.J., Milne, W.I., and Amaratunga, G.A.J.: Photo electrochemical cell using dye-sensitized zinc oxide nanowires grown on carbon fibers. Appl. Phys. Lett. 93, 133116 (2008).CrossRefGoogle Scholar
9.Unalan, H.E., Hiralal, P., Kuo, D., Parekh, B., Amaratunga, G.A.J., and Chhowalla, M.: Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single-walled carbon nanotube thin films. J. Mater. Chem. 18, 59095912 (2008).CrossRefGoogle Scholar
10.Wangand, Z.L. and Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242246 (2006).Google Scholar
11.Lu, M.P., Song, J., Lu, M.Y., Chen, M.T., Gao, Y., Chen, L.J., and Wang, Z.L.: Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 12231227 (2009).CrossRefGoogle ScholarPubMed
12.Könenkamp, R., Word, R.C., and Godinez, M.: Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes. Nano Lett. 5, 12231227 (2005).CrossRefGoogle ScholarPubMed
13.Jeong, M.C., Oh, B.Y., Ham, M.H., and Myoung, J.M.: Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 88, 202105-1 (2006).CrossRefGoogle Scholar
14.Wei, Z.P., Lu, Y.M., Shen, D.Z., Zhang, Z.Z., Yao, B., Li, B.H., Zhang, J.Y., Zhao, D.X., Fan, X.W., and Tang, Z.K.: Room temperature p-n ZnO blue-violet light-emitting diodes. Appl. Phys. Lett. 90, 042113-3 (2007).CrossRefGoogle Scholar
15.Chen, M.T., Lu, M.P., Wu, Y.J., Song, J., Lee, C.Y., Lu, M.Y., Chang, Y.C., Chou, L.J., Wang, Z.L., and Chen, L.J.: Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett. 10, 43874393 (2010).CrossRefGoogle ScholarPubMed
16.Wu, J.J., Wen, H.I., Tseng, C.H., and Liu, S.C.: Well-aligned ZnO nanorods via hydrogen treatment of ZnO films. Adv. Funct. Mater. 14, 806810 (2004).CrossRefGoogle Scholar
17.Lyu, S.C., Zhang, Y., Lee, C.J., Ruh, H., and Lee, H.J.: Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 32943299 (2003).CrossRefGoogle Scholar
18.Yuan, H. and Zhang, Y.: Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD. J. Cryst. Growth 263, 119124 (2004).CrossRefGoogle Scholar
19.Ye, Z., Huang, J., Xu, W., Zhou, J., and Wang, Z.: Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape. Solid State Commun. 141, 464466 (2007).CrossRefGoogle Scholar
20.Elias, J., Tena-Zaera, R., and Lévy-Clément, C.: Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. J. Electroanal. Chem. 621, 171177 (2008).CrossRefGoogle Scholar
21.Xu, S., Adiga, N., Ba, S., Dasgupta, T., Wu, C.F.J., and Wang, Z.L.: Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 3, 18031812 (2009).CrossRefGoogle ScholarPubMed
22.Lee, Y.J., Sounart, T.L., Liu, J., Spoerke, E.D., McKenzie, B.B., Hsu, J.W.P., and Voigt, J.A.: Tunable arrays of ZnO nanorods and nanoneedles via seed layer and solution chemistry. Cryst. Growth Des. 8, 20362040 (2008).CrossRefGoogle Scholar
23.Vayssieres, L.: Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464466 (2003).CrossRefGoogle Scholar
24.Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G., and Yang, P.: General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 5, 12311236 (2005).CrossRefGoogle ScholarPubMed
25.Wang, S.F., Tseng, T.Y., Wang, Y.R., Wang, C.Y., Lu, H.C., and Shih, W.L.: Effects of preparation conditions on the growth of ZnO nanorod arrays using aqueous solution method. Int. J. Appl. Ceram. Technol. 5, 419429 (2008).CrossRefGoogle Scholar
26.Zhang, W. and Yanagisawa, K.: Hydrothermal synthesis of ZnO long fibers. Chem. Lett. 34, 11701171 (2005).CrossRefGoogle Scholar
27.Li, L., Yang, H., Yu, J., Chen, Y., Ma, J., Zhang, J., Song, Y., and Gao, F.: Controllable growth of ZnO nanowires with different aspect ratios and microstructures and their photoluminescence and photosensitive properties. J. Cryst. Growth 311, 41994206 (2009).CrossRefGoogle Scholar
28.Unalan, H.E., Hiralal, P., Rupesinghe, N., Dalal, S., Milne, W.I., and Amaratunga, G.A.J.: Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19, 255608-5 (2008).CrossRefGoogle ScholarPubMed
29.Sun, Y., Riley, D.J., and Ashfold, M.N.R.: Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. J. Phys. Chem. B 110, 1518615192 (2006).CrossRefGoogle ScholarPubMed
30.Lee, Y., Sounart, T., Scrymgeour, D., Voigt, J., and Hsu, J.: Control of ZnO nanorod array alignment synthesized via seeded solution growth. J. Cryst. Growth 304, 8085 (2007).CrossRefGoogle Scholar
31.Qin, Y., Yang, R., and Wang, Z.L.: Growth of horizontal ZnO nanowire arrays on any substrate growth of horizontal ZnO nanowire arrays on any substrate. J. Phys. Chem. B 112, 1873418736 (2008).Google Scholar
32.Kim, Y.J., Lee, C.H., Hong, Y.J., Yi, G.C., Kim, S.S., and Cheong, H.: Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Appl. Phys. Lett. 89, 163128-3 (2006).CrossRefGoogle Scholar
33.Akgun, M.C., Kalay, Y.E., and Unalan, H.E.: Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt. J. Mater. Res. 27, 14451451 (2012).CrossRefGoogle Scholar