Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T10:38:36.929Z Has data issue: false hasContentIssue false

Glass-forming ability of the Ni–Zr and Ni–Ti systems determined by interatomic potentials

Published online by Cambridge University Press:  31 January 2011

W. S. Lai*
Affiliation:
Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China and State Key Laboratory of Solid State Microstructure Physics, Nanjing University, Nanjing 200093, People's Republic of China
B. X. Liu
Affiliation:
Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China and State Key Laboratory of Solid State Microstructure Physics, Nanjing University, Nanjing 200093, People's Republic of China
*
a)Address all correspondence to this author. e-mail: wslai@tsinghua.edu.cn
Get access

Abstract

Employing the n-body potentials of the Ni–Zr and Ni–Ti systems, we performed molecular dynamics simulation to study the relative stability of the terminal solid solutions versus the corresponding amorphous states as a function of solute concentrations. The terminal solid solutions transformed into amorphous states spontaneously when the solute concentrations were beyond the maximum allowable values; i.e., the critical solubilities were determined to be 14 at.% Zr in Ni and 25 at.% Ni in Zr for Ni–Zr system and 38 at.% Ti in Ni and 15 at.% Ni in Ti for the Ni–Ti system. The physical implication of the critical concentrations, as well as their correlation with the glass-forming abilities of the Ni–Zr and Ni–Ti systems, is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Duwez, P., Willens, R.H., and Klement, W., J. Appl. Phys. 31, 1136 (1960).CrossRefGoogle Scholar
2.Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
3.Liu, B.X., Johnson, W.L., Nicolet, M-A., and Lau, S.S., Appl. Phys. Lett. 42, 45 (1983).CrossRefGoogle Scholar
4.Egami, T. and Waseda, Y., J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
5.Liu, B.X., Che, D.Z., Zhang, Z.J., Lai, S.L., and Ding, J.R., Phys. Status Solidi A 128, 345 (1991).CrossRefGoogle Scholar
6.Okamoto, P.R., Lam, N.Q., and Rehn, L.E., Solid State Phys. 52, 1 (1999).CrossRefGoogle Scholar
7.Liu, B.X. and Jin, O., Phys. Status Solidi A 161, 3 (1997).3.0.CO;2-U>CrossRefGoogle Scholar
8.Bormann, R. and Busch, R., J.Non-Crys. Solids 117–118, 539 (1990).CrossRefGoogle Scholar
9.Zhang, Q., Lai, W.S., and Liu, B.X., Phys. Rev. B 59, 13521 (1999).CrossRefGoogle Scholar
10.Massobrio, C., Pontikis, V., and Martin, G., Phys. Rev. B 41, 10486 (1990).CrossRefGoogle Scholar
11.Devanathan, R., Lam, N.Q., Okamoto, P.R., and Meshii, M., Phys. Rev. B 48, 42 (1993).CrossRefGoogle Scholar
12.Lai, W.S. and Liu, B.X., J. Phys. Condens. Matter 12, L53 (2000).CrossRefGoogle Scholar
13.Parrinello, M. and Rahman, A., J. Appl. Phys. 52, 7182 (1981).CrossRefGoogle Scholar
14.van den Beukel, Z. and Radelaar, S., Acta Met. 31, 419 (1983).CrossRefGoogle Scholar
15.Bøttiger, J., Dyrbye, K., Pampus, K., and Poulsen, R., Philos. Mag. A 59, 569 (1989).CrossRefGoogle Scholar
16.Fukunaga, T., Watanabe, W., and Suzuki, K., J. Non-Cryst. Solids 61&62, 343 (1984).CrossRefGoogle Scholar
17.Lindemann, F.A., Phys. Z. 11, 609 (1910).Google Scholar
18.Born, M., J. Chem. Phys. 7, 591 (1939).CrossRefGoogle Scholar
19.Minemura, T., van den Broek, J.J., Daams, J.L.C., J. Appl. Phys. 64, 4770 (1988).CrossRefGoogle Scholar
20.Okamoto, P.R., Heuer, J.K., Lam, N.Q., Ohnuki, S., Matsukawa, Y., Tozawa, K., and Stubbins, J.F., Appl. Phys. Lett. 73, 473 (1998).CrossRefGoogle Scholar