Published online by Cambridge University Press: 31 January 2011
The structure and thermodynamic properties of a Σ5 (001) twist boundary in gold are studied as a function of temperature. This study was performed within the framework of the Local Harmonic (LH) model and employed an Embedded Atom Method (EAM) potential for gold. We find that for the Σ5 (001) twist boundary in gold, a distorted CSL structure is stable at low temperatures, but undergoes a phase transformation to a DSC related structure near room temperature. This transformation is shown to be first order. The temperature dependences of the excess grain boundary free energy, enthalpy, entropy, specific heat, and excess volume are calculated. Discontinuities are observed in the slope of the grain boundary excess free energy (versus temperature), in the value of the grain boundary excess specific heat and excess volume. The stable high temperature grain boundary structure has a smaller excess volume than does the lower temperature structure, and both structures have a coefficient of thermal expansion which is in excess of that for the perfect crystal.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.