Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T04:43:37.025Z Has data issue: false hasContentIssue false

Ferromagnetic signature in vanadium doped ZnO thin films grown by pulsed laser deposition

Published online by Cambridge University Press:  03 October 2016

S. Karamat*
Affiliation:
Natural Science and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore; and Department of Physics, COMSATS Institute of Information Technology, Islamabad 45550, Pakistan
R.S. Rawat
Affiliation:
Natural Science and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
P. Lee
Affiliation:
Natural Science and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
T.L. Tan
Affiliation:
Natural Science and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
C. Ke
Affiliation:
Division of Physics and Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
R. Chen
Affiliation:
Division of Physics and Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
H.D. Sun
Affiliation:
Division of Physics and Applied Physics, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
*
a) Address all correspondence to this author. e-mail: shumailakaramat@gmail.com, shumailakaramat@comsats.edu.pk
Get access

Abstract

Dilute magnetic semiconductors are attractive due to their potential in spintronic devices. In this work, vanadium doped ZnO system has been studied to see its future as a dilute magnetic semiconductor. Vanadium doped ZnO thin films where vanadium percentage is 2, 3, and 5% are deposited by pulsed laser technique (PLD). The lattice parameter c derived from the (002) diffraction peak increases as vanadium content increases, suggesting vanadium substitution for Zn in ZnO lattice. Photoluminescence (PL) measurements at low temperature shows the emission peak at 3.30 eV which hint toward p-type doping in ZnO. X-ray photoelectron spectroscopy (XPS) results show that vanadium exists in V2+ and V4+ valence state, which is in agreement with the XRD and PL results and support the vanadium doped ZnO phase. The ferromagnetic behavior also supports the formation of vanadium doped ZnO phase in thin film samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998).CrossRefGoogle ScholarPubMed
Ohno, H.: Properties of ferromagnetic III–V semiconductors. J. Magn. Magn. Mater. 200(1–3), 110 (1999).Google Scholar
Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294, 1488 (2001).Google Scholar
Ohno, H., Munekata, H., Penney, T., von Molnar, S., and Chang, L.L.: Magnetotransport properties of p-type (In,Mn)As diluted magnetic III–V semiconductors. Phys. Rev. Lett. 68, 2664 (1992).Google Scholar
Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000).Google Scholar
Gao, Y., Gereige, I., El Labban, A., Cha, D., Isimjan, T.T., and Beaujuge, P.M.: Highly transparent and UV-resistant superhydrophobic SiO2-coated ZnO nanorod arrays. ACS Appl. Mater. Interfaces 6, 22192223 (2014).Google Scholar
Menner, R., Dimmler, B., Mauch, R.H., and Shock, H.W.: II–VI compound thin films for windows in heterojunction solar cells. J. Cryst. Growth 86(1), 906 (1988).CrossRefGoogle Scholar
Z-Xian, L., Tai-Liang, G., Li-Qin, H., Liang, Y., Jing-Jing, W., Chun-Jian, Y., Yong-Ai, Z., and Ke-Lu, Z.: Tetrapod-like ZnO nanostructures serving as cold cathodes for flat panel displays. Acta Phys. Sin. 55(10), 5531 (2006).Google Scholar
Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., and Noufi, R.: 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. Prog. Photovoltaics 16, 235 (2008).Google Scholar
Zhang, S.B., Wei, S.H., and Zunger, A.: Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 75205 (2001).Google Scholar
Joseph, M., Tababta, H., and Kawai, T.: p-Type electrical conduction in ZnO thin films by Ga and N codoping. Jpn. J. Appl. Phys. 38, L1205 (1999).Google Scholar
Saeki, H., Tabata, H., and Kawai, T.: Magnetic and electric properties of vanadium doped ZnO films. Solid State Commun. 120, 439 (2001).CrossRefGoogle Scholar
Sato, K. and Yoshida, H.K.: Material design for transparent ferromagnets with ZnO-based magnetic semiconductors. Jpn. J. Appl. Phys. 39, L555 (2000).Google Scholar
Maensiri, S., Masingboon, C., Promarak, V., and Seraphin, S.: Synthesis and optical properties of nanocrystalline V-doped ZnO powders. Opt. Mater. 29, 1700 (2007).Google Scholar
Karamat, S., Rawat, R.S., Lee, P., Tan, T.L., Ramanujan, R.V., and Zhou, W.: Structural, compositional and magnetic characterization of bulk V2O5 doped ZnO system. Appl. Surf. Sci. 256, 2309 (2010).Google Scholar
Lorenz, M., Kaidashev, E.M., von Wenckstern, H., Riede, V., Bundesmann, C., Spemann, D., Benndorf, G., Hochmuth, H., Rahm, A., Semmelhack, H-C., and Grundmann, M.: Optical and electrical properties of epitaxial (Mg,Cd) x Zn1−x O, ZnO, and ZnO:(Ga,Al) thin films on c-plane sapphire grown by pulsed laser deposition. Solid-State Electron. 47, 2205 (2003).Google Scholar
Choi, J.H., Tabata, H., and Kawai, T.: Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition. J. Cryst. Growth 226, 493500 (2001).Google Scholar
Hayamizu, S., Tabata, H., Tanaka, H., and Kawai, T.: Preparation of crystallized zinc oxide films on amorphous glass substrates by pulsed laser deposition. J. Appl. Phys. 80, 787 (1996).CrossRefGoogle Scholar
Fujimura, N., Nishibara, T., Goto, S., Xu, J., and Ito, T.: Control of preferred orientation for ZnO x films: Control of self-texture. J. Cryst. Growth 130, 269 (1993).Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751767 (1976). doi: 10.1107/S0567739476001551.Google Scholar
Karamat, S., Mahmood, S., Lin, J.J., Pan, Z.Y., Lee, P., Tan, T.L., Springham, S.V., Ramanujan, R.V., and Rawat, R.S.: Structural, optical and magnetic properties of (ZnO)1−x (MnO2) x thin films deposited at room temperature. Appl. Surf. Sci. 254, 72857289 (2008).Google Scholar
Lovchinov, K., Angelov, O., Nichev, H., Mikli, V., and Dimova-Malinovska, D.: Transparent and conductive ZnO thin films doped with V. Energy Procedia 10, 282 (2011).Google Scholar
Wang, Y.G., Lau, S.P., Lee, H.W., Yu, S.F., Tay, B.K., Zhang, X.H., Tse, K.Y., and Hng, H.H.: Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature. J. Appl. Phys. 94, 1597 (2003).Google Scholar
Wang, L., Meng, L., Teixeir, V., Song, S., Xu, Z., and Xu, X.: Structure and optical properties of ZnO:V thin films with different doping concentrations. Thin Solid Films 517, 3721 (2009).Google Scholar
Wang, J.Z., Elamurugu, E., Sallet, V., Jomard, F., Lusson, A., Botelho do Rego, A.M., Barquinha, P., Goncalves, G., Martins, R., and Fortunato, E.: Effect of annealing on the properties of N-doped ZnO films deposited by RF magnetron sputtering. Appl. Surf. Sci. 254, 7178 (2008).Google Scholar
Park, S., Minegishi, T., Oh, D., Lee, H., Taishi, T., Park, J., Jung, M., Chang, J., Im, I., Ha, J., Hong, S., Yonenaga, I., Chikyow, T., and Yao, T.: High-quality p-type ZnO films grown by co-doping of N and Te on Zn-face ZnO substrates. Appl. Phys. Express 3, 031103 (2010).Google Scholar
NIST Standard Reference Database 20, Version 4.1 ©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. http://srdata.nist.gov/xps/ (accessed August 25, 2016).Google Scholar