Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T00:02:37.185Z Has data issue: false hasContentIssue false

Ferroelectric behavior of pulsed laser deposited BaxSr1−xTiO3 thin films

Published online by Cambridge University Press:  31 January 2011

Vivek Mehrotra
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501
Simon Kaplan
Affiliation:
Department of Physics, Cornell University, Ithaca, New York 14853
Albert J. Sievers
Affiliation:
Department of Physics, Cornell University, Ithaca, New York 14853
Emmanuel P. Giannelis
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853-1501
Get access

Abstract

Ba0.75Sr0.25TiO3 thin films have been deposited on single-crystal MgO substrates by pulsed laser deposition with the objective of forming ferroelectric films with a low Curie temperature. The films have been characterized by capacitance measurements and by transmission electron microscopy, x-ray diffraction, and Rutherford backscattering spectrometry (random and channeled). Films deposited with the substrate at 500 °C are polycrystalline, while those deposited at 650 °C are highly aligned and possibly epitaxial. The films are transparent in the visible region with an optical absorption edge at about 300 nm. Capacitance measurements on the polycrystalline films reveal a Curie transition at 283 K. The lowering of Curie temperature from the corresponding bulk sample is attributed to the films being under compression, as verified by Raman spectroscopy.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sayer, M. and Sreenivas, K., Science 247, 1056 (1990).CrossRefGoogle Scholar
2Parker, L. H. and Tausch, A. F., IEEE Circuits and Devices 6, 17 (1990).CrossRefGoogle Scholar
3Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990).Google Scholar
4Jona, F. and Shirane, G., Ferroelectric Crystals (Pergamon, New York, 1962), p. 248.Google Scholar
5Schwarz, H. and Tourtellotte, H. A., J. Vac. Sci. Technol. 6, 373 (1969).CrossRefGoogle Scholar
6Ramesh, R., Luther, K., Wilkens, B., Hart, D. L., Wang, E., Tarascon, J. M., Inam, A., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. 57, 1505 (1990).CrossRefGoogle Scholar
7Davis, G. M. and Gower, M. C., Appl. Phys. Lett. 55, 112 (1989).CrossRefGoogle Scholar
8Norton, M.G. and Carter, C.B., J. Mater. Res. 5, 2762 (1990).CrossRefGoogle Scholar
9Norton, M. G., Scarfone, C., Li, J., Carter, C. B., and Mayer, J. W., J. Mater. Res. 6, 2022 (1991).CrossRefGoogle Scholar
10Ogale, S.B., Kanetkar, S. M., Chaudhari, S.M., Godbole, V.P., Koinkar, V. N., Joshi, S., Nawathey, R., Vispute, R. D., Date, S. K., and Moghe, A.R., Ferroelectrics 102, 85 (1990).CrossRefGoogle Scholar
11Dawson, W.J., Am. Ceram. Soc. Bull. 67, 1673 (1988).Google Scholar
12DiDomenico, M. Jr, Wemple, S. H., and Porto, S. P. S., Phys. Rev. 174, 522 (1968).CrossRefGoogle Scholar
13Fujimoto, K., Kobayashi, Y., and Kubota, K., Thin Solid Films 169, 249 (1989).CrossRefGoogle Scholar
14Li, Q., Meyer, O., Xi, X. X., Geerk, J., and Linker, G., Appl. Phys. Lett. 55, 310 (1989).CrossRefGoogle Scholar
15Venkatesan, T., Wu, X. D., Muenchausen, R., and Pique, A., Mater. Res. Soc. Bull. XVII, 54 (1992).CrossRefGoogle Scholar
16Eom, C.B., Cava, R.J., Fleming, R.M., Phillips, J.L., Dover, R.B. van, Marshall, J. H., Hsu, J. W. P., Krajewski, J. J., and Peck, W. F. Jr., Science 258, 1766 (1992).CrossRefGoogle Scholar