Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T02:44:52.969Z Has data issue: false hasContentIssue false

Facile route to tin oxide containing mesoporous silica composites with room-temperature photoluminescence

Published online by Cambridge University Press:  01 March 2006

Zhicheng Liu
Affiliation:
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Hangrong Chen
Affiliation:
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Weiming Huang
Affiliation:
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Jinlou Gu
Affiliation:
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Wenbo Bu
Affiliation:
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Zile Hua
Affiliation:
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
Jianlin Shi*
Affiliation:
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: jlshi@sunm.shcnc.ac.cn
Get access

Abstract

In this paper, we report a facile route, the tin vapor treatment method, to prepare tin oxide containing mesoporous silica composites (TOMS), which display room-temperature photoluminescence (RT-PL). Among them, TOMS-1 and TOMS-2 were synthesized from mesoporous silica SBA-15 and KIT-6, respectively. They are composed of amorphous SiO2 and tin oxide species and they display strong emission near ultraviolet (UV) when excited by UV light. By increasing the preparation temperature, their Sn content can be increased and subsequently their photoluminescence (PL) intensities can be greatly enhanced. Besides, their PL properties are revealed to be closely related to 2-fold-coordinated tin oxygen-deficient centers.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
2.Smith, R.L., Collins, S.D.: Porous silicon formation mechanisms. J. Appl. Phys. 71, R1 (1992).CrossRefGoogle Scholar
3.Shor, J.S., Grimberg, I., Weiss, B., Kurtz, A.D.: Direct observation of porous SiC formed by anodization in HF. Appl. Phys. Lett. 62, 2836 (1993).CrossRefGoogle Scholar
4.Matsumoto, T., Takahashi, J., Tamaki, T., Futagi, T., Mimura, H., Kanemitsu, Y.: Blue-green luminescence from porous silicon-carbide. Appl. Phys. Lett. 64, 226 (1994).CrossRefGoogle Scholar
5.Ozin, G.A., Godber, J., Stein, A. Photosensitive, radiation sensitive, thermally sensitive and pressure sensitive silver sodalite materials. U.S. Patent No. 4 942 119 (1990).Google Scholar
6.Davis, M.E.: Ordered porous materials for emerging applications. Nature 417, 813 (2002).CrossRefGoogle ScholarPubMed
7.Ihlein, G., Schuth, F., Benmohammadi, L.: Alignment of a laser dye in the channels of the AlPO4-5 molecular sieve. Adv. Mater. 10, 1117 (1998).3.0.CO;2-W>CrossRefGoogle Scholar
8.Wark, M., Ganschon, M., Rohlfing, Y., Schulz-Ekloff, G., Wöhrle, D.Methods of synthesis for the encapsulation of dye molecules in molecular sieves. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 21-O-02 (2001).CrossRefGoogle Scholar
9.Weiß, Ö., Schüth, F., Benmohammadi, L., Laeri, F.Potential microlasers based on AlPO4-5/DCM composites. Stud. Surf. Sci. Catal. 135, [CD-ROM] Paper 21-O-04 (2001).CrossRefGoogle Scholar
10.Scott, B.J., Wirnsberger, G., Stucky, G.D.: Mesoporous and mesostructured materials for optical applications. Chem. Mater. 13, 3140 (2001).CrossRefGoogle Scholar
11.Marlow, F., McGehee, M.D., Zhao, D.Y., Stucky, G.D.: Doped mesoporous silica fibers: A new laser material. Adv. Mater. 11, 632 (1999).3.0.CO;2-Q>CrossRefGoogle Scholar
12.Scott, B.J., Wirnsberger, G., McGehee, M.D., Stucky, G.D.: Dye-doped mesostructured silica as a distributed feedback laser fabricated by soft lithography. Adv. Mater. 13, 1231 (2001).3.0.CO;2-8>CrossRefGoogle Scholar
13.Wu, C.G., Bein, T.: Conducting carbon wires in ordered, nanometer-sized channels. Science 264, 1757 (1994).CrossRefGoogle Scholar
14.Srdanov, V.I., Alxneit, I., Stucky, G.D.: Optical properties of GaAs confined in the pores of MCM-41. J. Phys. Chem. B 102, 3341 (1998).CrossRefGoogle Scholar
15.Gao, F.F., Zhu, G.S., Li, X.T., Li, B., Qiu, S., Terasaki, O.: Synthesis of a high-quality host material: Zeolite MFI giant single crystal from monocrystalline silicon slice. J. Phys. Chem. B 105, 12704 (2001).CrossRefGoogle Scholar
16.Seifert, R., Kunzmann, A., Calzaferri, G.: The yellow color of silver-containing zeolite A. Angew. Chem. Int. Ed. Engl. 37, 1522 (1998).3.0.CO;2-V>CrossRefGoogle ScholarPubMed
17.Bruhwiler, D., Seifert, R., Calzaferri, G.: Quantum-sized silver sulfide clusters in zeolite A. J. Phys. Chem. B 103, 6397 (1999).CrossRefGoogle Scholar
18.Shi, J.L., Hua, Z.L., Zhang, L.X.: Nanocomposites from ordered mesoporous materials. J. Mater. Chem. 14, 795 (2004).CrossRefGoogle Scholar
19.Sauer, J., Marlow, F., Spliethoff, B., Schüth, F.: Rare earth oxide coating of the walls of SBA-15. Chem. Mater. 14, 217 (2002).CrossRefGoogle Scholar
20.Chen, W., Joly, A.G., Kowalchuk, C.M., Malm, J.O., Huang, Y.N., Bovin, J.O.: Structure, luminescence, and dynamics of Eu2O3 nanoparticles in MCM-41. J. Phys. Chem. B 106, 7034 (2002).CrossRefGoogle Scholar
21.Frindell, K.L., Bartl, M.H., Popitsch, A., Stucky, G.D.: Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew. Chem. Int. Ed. Engl. 41, 959 (2002).3.0.CO;2-M>CrossRefGoogle ScholarPubMed
22.Yada, M., Kitamura, H., Ichinose, A., Machida, M., Kijima, T.: Mesoporous magnetic materials based on rare earth oxides. Angew. Chem. Int. Ed. Engl. 38, 3506 (1999).3.0.CO;2-2>CrossRefGoogle ScholarPubMed
23.Shen, J.L., Cheng, C.F.: Photoluminescence of MCM meso-porous materials. Curr. Opin. Solid State Maters. Sci. 7, 427 (2003).CrossRefGoogle Scholar
24.Zhang, J., Lin, J.: Comparative study on the photoluminescent properties of siliceous MCM-41 with silica particles and xerogels. Microporous Mesoporous Mater. 75, 115 (2004).CrossRefGoogle Scholar
25.Inaki, Y., Yoshida, H., Yoshida, T., Hattori, T.: Active sites on mesoporous and amorphous silica materials and their photocatalytic activity: An investigation by FTIR, ESR, VUV-UV and photoluminescence spectroscopies. J. Phys. Chem. B 106, 9098 (2002).CrossRefGoogle Scholar
26.Song, H.Z., Bao, X.M.: Visible photoluminescence from siliconion-implanted SiO2 film and its multiple mechanisms. Phys. Rev. B 55, 6988 (1997).CrossRefGoogle Scholar
27.Chen, H.R., Shi, J.L., Yang, Y., Li, Y.S., Yan, D.S.: Violet-blue photoluminescent properties of mesoporous zirconia modified with phosphoric acid. Appl. Phys. Lett. 81, 2761 (2002).CrossRefGoogle Scholar
28.Hagfeldt, A., Gratzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995).CrossRefGoogle Scholar
29.Kim, T.W., Lee, D.U., Yoon, Y.S.: Microstructural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices. J. Appl. Phys. 88, 3759 (2000).CrossRefGoogle Scholar
30.Kim, T.W., Lee, D.U., Lee, J.H., Choo, D.C., Jung, M., Yoon, Y.S.: Structural, electrical, and optical properties of SnO2 nanocrystalline thin films grown on p-InSb (111) substrates. J. Appl. Phys. 90, 175 (2001).CrossRefGoogle Scholar
31.Gu, F., Wang, S.F., , M.K., Cheng, X.F., Liu, S.W., Zhou, G.J., Xu, D., Yuan, D.R.: Luminescence of SnO2 thin films prepared by spin-coating method. J. Cryst. Growth 262, 182 (2004).CrossRefGoogle Scholar
32.Hu, J.Q., Ma, X.L., Shang, N.G., Xie, Z.Y., Wong, N.B., Lee, C.S., Lee, S.T.: Large-scale rapid oxidation synthesis of SnO2 nanoribbons. J. Phys. Chem. B 106, 3823 (2002).CrossRefGoogle Scholar
33.Ribeiro, C., Lee, E.J.H., Giraldi, T.R., Longo, E., Varela, J.A., Leite, E.R.: Study of synthesis variables in the nanocrystal growth behavior of tin oxide processed by controlled hydrolysis. J. Phys. Chem. B 108, 15612 (2004).CrossRefGoogle Scholar
34.Gu, F., Wang, S.F., , M.K., Qi, Y.X., Zhou, G.J., Xu, D., Yuan, D.R.: Luminescent properties of Mn2+-doped SnO2 nanoparticles. Inorg. Chem. Comm. 6, 882 (2003).CrossRefGoogle Scholar
35.Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998).CrossRefGoogle ScholarPubMed
36.Kleitz, F., Choi, S.H., Ryoo, R.: Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 17, 2136 (2003).CrossRefGoogle Scholar
37.Nie, C., Huang, L., Zhao, D., Li, Q.: Stability of mesoporous materials SBA-15 and its benefit in catalytic performance. Stud. Surf. Sci. Catal. 135, 286 (2001).CrossRefGoogle Scholar
38.Wang, D.N., Miller, A.C., Notis, M.R.: XPS study of the oxidation behavior of the Cu3Sn intermetallic compound at low temperatures. Surf. Interface Anal. 24, 127 (1996).3.0.CO;2-Z>CrossRefGoogle Scholar
39.Tsunekawa, S., Kang, J., Asami, K., Kasuya, A.: Blueshifts in the ultraviolet absorption spectra of amphoteric SnO2−x nanocrystalline particles. J. Appl. Phys. 91, 10098 (2002).CrossRefGoogle Scholar
40.Song, H.Z., Bao, X.M.: Visible photoluminescence from siliconion-implanted SiO2 film and its multiple mechanisms. Phys. Rev. B 55, 6988 (1997).CrossRefGoogle Scholar
41.Grünberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G.H., Limbach, H., Buntkowsky, G.: Hydrogen bonding of water confined in mesoporous silica MCM-41 and SBA-15 studied by 1H solid-state NMR. Chem. Eur. J. 10, 5689 (2004).CrossRefGoogle ScholarPubMed
42.Shenderovich, I.G., Buntkowsky, G., Schreiber, A., Gedat, E., Sharif, S., Albrecht, J., Golubev, N.S., Findenegg, G.H., Limbach, H.: Pyridine-15N-A mobile NMR sensor for surface acidity and surface defects of mesoporous silica. J. Phys. Chem. B 107, 11924 (2003).CrossRefGoogle Scholar
43.Chiodini, N., Meinardi, F., Morazzoni, F., Paleari, A., Scotti, R., Spinolo, G.: Identification of Sn variants of the E′ center in Sn-doped SiO2. J. Non-Cryst. Solids 261, 1 (2000).CrossRefGoogle Scholar
44.Skuja, L.: Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2—A luminescence study. J. Non-Cryst. Solids 149, 77 (1992).CrossRefGoogle Scholar
45.Pacchioni, G., Ferrario, R.: Optical transitions and EPR properties of two-coordinated Si, Ge, Sn and related H(I), H(II), and H(III) centers in pure and doped silica from ab initio calculations. Phys. Rev. B 58, 6090 (1998).CrossRefGoogle Scholar
46.Sugibuchi, K.: Photosensitive electron spin resonance of Sn3+ in zinc sulfide. Phys. Rev. 153, 404 (1967).CrossRefGoogle Scholar
47.Chaudhari, K., Das, T.K., Rajmohanan, P.R., Lázár, K., Sivasanker, S., Chandwadkar, A.J.: Mesoporous aluminosilicate of the MCM-41 type: Its catalytic activity in n-hexane isomerization. J. Catal. 183, 281 (1999).CrossRefGoogle Scholar
48.Mal, N.K., Ramaswamy, A.V.: Hydroxylation of phenol over Sn-silicalite-1 molecular sieve: Solvent effects. J. Mol. Catal. A: Chem. 105, 149 (1996).CrossRefGoogle Scholar
49.Rybaltovskii, A.O., Kamenskikh, I.A., Mikhailin, V.V., Semenova, N.L., Spasskii, D.A., Zimmerer, G., Chernov, P.V., Golant, K.M.: Spectroscopic features of silica glasses doped with tin. Glass Phys. Chem. 28, 379 (2002).CrossRefGoogle Scholar
50.Martini, M., Meinardi, F., Paleari, A., Spinolo, G., Vedda, A., Di Martino, D., Negrisolo, F.: Sn codoping effects on the photoluminescence of SiO2:Ge. J. Non-Cryst. Solids 261, 1 (2000).Google Scholar
51.Brambilla, G., Pruneri, V., Reekie, L., Paleari, A., Chiodini, N., Booth, H.: High photosensitivity in SnO2: SiO2 optical fibers. Fib. Integr. Opt. 20, 553 (2001).CrossRefGoogle Scholar
52.Hayakawa, T., Enomoto, T., Nogami, M.: Nanocrystalline SnO2 particles and twofold-coordinated Sn defect centers in sol-gel-derived SnO2–SiO2 glasses. J. Mater. Res. 17, 1305 (2002).CrossRefGoogle Scholar
53.Chiodini, N., Meinardi, F., Morazzoni, F., Paleari, A., Scotti, R., Di Martino, D.: Photoluminescence of Sn-doped SiO2 excited by synchrotron radiation. Phys. Rev. B 58, 9615 (1998).CrossRefGoogle Scholar