Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:33:24.021Z Has data issue: false hasContentIssue false

Fabrication of microchannel arrays in borophosphosilicate glass

Published online by Cambridge University Press:  01 March 2005

Claire L. Callender*
Affiliation:
Communications Research Centre, Ottawa, Ontario, Canada K2H 8S2
Christopher J. Ledderhof
Affiliation:
Communications Research Centre, Ottawa, Ontario, Canada K2H 8S2
Patrick Dumais
Affiliation:
Communications Research Centre, Ottawa, Ontario, Canada K2H 8S2
Chantal Blanchetière
Affiliation:
Communications Research Centre, Ottawa, Ontario, Canada K2H 8S2
Julian P. Noad
Affiliation:
Communications Research Centre, Ottawa, Ontario, Canada K2H 8S2
*
a)Address all correspondence to this author. e-mail: claire.callender@crc.ca
Get access

Abstract

Two-dimensional arrays of embedded channels with cross-sectional diameters of 1–3 μm were fabricated in silica-on-silicon thin film structures. The channel arrays were fabricated using void-forming borophosphosilcate glass (BPSG) deposited by plasma-enhanced chemical vapor deposition (PECVD) over templates patterned and etched using standard photolithographic methods and reactive ion etching. The sizeand shape of the channels could be controlled by adjusting the depth, width, and spacing of the template ridges, the dopant levels in the BPSG, and the annealing conditions. Optimization of the channel fabrication process through detailed investigation of the process variables is presented. Potential applications inphotonics, sensors, and microfluidics are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Giordano, N. and Cheng, J-T.: Microfluid mechanics: Progress and opportunities. J. Phys.: Condens. Matter 13, R271 (2001).Google Scholar
2.Chován, T. and Guttman, A.: Microfabricated devices in biotechnology and biochemical processing. Trends Biotechnol. 20(3), 116 (2002).CrossRefGoogle ScholarPubMed
3.Kandikhar, S.G. and Grande, W.J.: Evolution of microchannel flow passages – thermohydraulic performance and fabrication technology. Heat Transfer Eng. 24(1), 3 (2003).CrossRefGoogle Scholar
4.Tanaka, M.: Method of fabricating a semiconductor integrated circuit device having and interlevel dielectric layer with voids between narrowly spaced wiring line. U.S. Patent No. 6 162 723 (2000).Google Scholar
5.Lee, S-K., Yen, C-T., Hsueh, C-C.C., Shih, J.R., and Lien, C-D.: Method of forming air gaps for reducing interconnect capacitance. U.S. Patent No. 6 136 687 (2000).Google Scholar
6.Chelnokov, A., David, S., Wang, K., Marty, F., Lourtioz, J-M.: Fabrication of 2-D and 3-D silicon photonic crystals by deep etching. IEEE J. Selected Topics in Quant. Electron. 8(4), 919 (2002).CrossRefGoogle Scholar
7.Runyan, W.R. and Bean, K.E.: Semiconductor Integrated Circuit Processing Technology, (Addison-Wesley, Reading, MA; 1990).Google Scholar
8.Ou, H.: Different index contrast silica-on-silicon waveguides by PECVD. Electron. Lett. 39(2), 212 (2003).CrossRefGoogle Scholar
9.Rodríguez, J.A., Domínguez, C., Muñoz, F.J. and Llobera, A.: Mechanical properties of PECVD silicon oxide films suitable for integrated optics applications. Proc. SPIE 3953, 142 (2000).CrossRefGoogle Scholar
10.Domínguez, C., Rodríguez, J.A., Muñoz, F.J. and Zine, N.: Plasma enhanced CVD silicon oxide films for integrated optic applications. Vacuum. 52, 395 (1999).CrossRefGoogle Scholar
11.Bulla, D.A.P. and Morimoto, N.I.: Deposition of thick TEOS PECVD silicon oxide layers for integrated optical waveguide applications. Thin Solid Films 334, 60 (1998).CrossRefGoogle Scholar
12.Xia, L-Q., Conti, R., Galiano, M., Campana, F., Chandran, S., Cote, D., Restaino, D. and Yieh, E.: High aspect ratio trench filling using two-step subatmospheric chemical vapor deposited borophosphosilicate glass for <0.18 μm device application. J. Electrochem. Soc. 146(5), 1884 (1999).CrossRefGoogle Scholar
13.Iyer, R., Thakur, R.P.S., Rhodes, H., Liao, R., Rosler, R. and Yieh, E.: Electrical and physical characterization of tetraethylorthosilicate-O3 borophosphosilicate glass. J. Electrochem. Soc. 143(10), 3366 (1996).CrossRefGoogle Scholar
14.Robles, S., Russell, K., Galiano, M., Siva, V., Kithcart, V. and Nguyen, B.C.: Gap fill and film reflow capability of subatmospheric chemical vapor deposited borophosphosilicate glass. J. Electrochem. Soc. 143(4), 1414 (1996).CrossRefGoogle Scholar
15.Kirchoff, M., Ilg, M. and Cote, D.: Application of borophosphosilicate glass (BPSG) in microelectronic processing. Ber. Bunsenges. Phys. Chem. 100(8), 1434 (1996).CrossRefGoogle Scholar
16.Saicherre, P-Y. Le, Rey, A. and Chatagnon, P.: Characterization of borosilicate glass step coverage for multilevel interconnection applications. J. Electrochem. Soc. 138(3), 815 (1991).CrossRefGoogle Scholar
17.Becker, F.S. and Röhl, S.: Low pressure deposition of doped SiO2 by pyrolysis of tetraethylorthosilicate (TEOS). I. Boron and phosphorus doped films. J. Electrochem. Soc. 134(11), 2923 (1987).CrossRefGoogle Scholar
18.Bellman, R.A., Bourdon, G., Alibert, G., Beguin, A., Guiot, E., Simpson, L.B., Lehuede, P., Guiziou, L. and LeGuen, E.: Ultralow loss high delta silica germania planar waveguides. J. Electrochem. Soc. 151(8), G541 (2004).CrossRefGoogle Scholar
19.Poulsen, M.P., Borel, P.I., Fage-Pedersen, J., Hübner, J., Kristensen, M., Povlsen, J.H., Rottwitt, K., Svalgaard, M. and Svendsen, W.: Advances in silica-based integrated optics. Opt. Eng. 42(10), 2821 (2003).CrossRefGoogle Scholar
20.Dumais, P., Callender, C.L., Noad, J.P. and Ledderhof, C.J.: Silica-on-silicon optical sensor based on integrated waveguides and microchannels. Photonics Technol. Lett. 17(2), 441 (2005).CrossRefGoogle Scholar