Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:57:57.542Z Has data issue: false hasContentIssue false

Enthalpy of formation of cubic yttria-stabilized hafnia

Published online by Cambridge University Press:  03 March 2011

Theresa A. Lee
Affiliation:
NEAT ORU and Thermochemistry Facility, University of California at Davis, Davis, California 95646-8779
Alexandra Navrotsky*
Affiliation:
NEAT ORU and Thermochemistry Facility, University of California at Davis, Davis, California 95646-8779
*
b)Address all correspondence to this author.e-mail: anavrotsky@ucdavis.edu
Get access

Abstract

The enthalpy of formation of cubic yttria-stabilized hafnia from monoclinic hafnia and C-type yttria was measured by oxide melt solution calorimetry. The enthalpies of formation fit a function independent of temperature and quadratic in composition. The enthalpies of transition from m-HfO2 and C-type YO1.5, to the cubic fluorite phase are 32.5 ± 1.7 kJ/mol and 38.0 ± 13.4 kJ/mol, respectively. The interaction parameter in the fluorite phase is strongly negative, -155.2 ± 10.2 kJ/mol, suggesting even stronger short range order than in ZrO2–YO1.5. Regular solution theory or any other model assuming random mixing on the cation and /or anion sublattice is not physically reasonable. A more complex solution model should be developed to be consistent with the new calorimetric data and observed phase relations.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, J., Li, H.P. and Stevens, R.: Hafnia and hafnia-toughened ceramics. J. Mater. Sci. 27, 5397 (1992).CrossRefGoogle Scholar
2Stevens, R.: An Introduction to Zirconia (Magnesium Electron, Twickenham, U.K., 1986)Google Scholar
3Sickafus, K.E., Valdez, J.A., Williams, J.R., Grimes, R.W. and Hawkins, H.T.: Radiation induced amorphization resistance in A2O3–BO2 oxides. Nucl. Instrum. Meth. B 191, 549 (2002).CrossRefGoogle Scholar
4Wallace, R.M. and Wilk, G.: High-kappa gate dielectric materials. MRS Bull. 27, 192 (2002).Google Scholar
5Nowick, A.S. and Park, D.S. in Superionic Conductors , edited by Mahan, G.D and Roth, W.L. (Plenum Press, New York, 1976)Google Scholar
6Kharton, V.V., Yaremchenko, A.A., Naumovich, E.N. and Marques, F.M.B.: Research on the electrochemistry of oxygen ion conductors in the former Soviet Union III. HfO2−, CeO2− and ThO2−based oxides. J. Solid State Electrochem. 4, 243 (2000).CrossRefGoogle Scholar
7Trubelja, M.F. and Stubican, V.S.: Ionic conductivity of the fluorite-type hafnia-R2O3 solid solutions. J. Am. Ceram. Soc. 74, 2489 (1991).CrossRefGoogle Scholar
8Schieltz, J.D., Patterson, J.W. and Wilder, D.R.: Electrolytic behavior of yttria-stabilized hafnia. J. Electrochem. Soc. 118, 1257 (1971).CrossRefGoogle Scholar
9Etsell, T.H. and Flengas, S.N.: Electrical properties of solid oxide electrolytes. Chem. Rev. 70, 339 (1970).CrossRefGoogle Scholar
10Kilner, J.A. and Steele, B.C.H. in Nonstoichiometric Oxides , edited by Sørenson, O.T. (Academic Press, New York, 1981), p. 254Google Scholar
11Navrotsky, A.: Progress and New Directions in High Temperature Calorimetry Revisited. Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
12 K.B. Helean and A. Navrotsky: Oxide Melt Solution Calorimetry of Rare Earth Oxides: Techniques, Problems, Cross-Checks, Successes, unpublished.Google Scholar
13McHale, J.M., Kowach, G.R., Navrotsky, A. and DiSalvo, F.J.: Thermochemistry of Metal Nitrides in the Ca/Zn/N System. Chem. Eur. J. 2, 1514 (1996).CrossRefGoogle Scholar
14Stacy, D.W. and Wilder, D.R.: J. Am. Ceram. Soc. 58, 285 (1975).CrossRefGoogle Scholar
15Putnam, R.L.Formation Energetics of Ceramic Waste Materials for the Disposal of Surplus Weapons Plutonium. Ph.D. Dissertation, Princeton University, Princeton, NJ, 1999Google Scholar
16Robie, R.A., Hemingway, B.S. and Fisher, J.R. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S. Geol. Survey Bull. 1452, 456 (1979)Google Scholar
17Ushakov, S.V., Helean, K.B., Navrotsky, A. and Boatner, L.A.: Thermochemistry of rare-earth orthophosphates. J. Mater. Res. 16, 2623 (2001).CrossRefGoogle Scholar
18Lowther, J.E., Dewhurst, J.K., Leger, J.M. and Haines, J.: Relative stability of ZrO2 and HfO2 structural phases. Phys. Rev. B 60, 14485 (1999).CrossRefGoogle Scholar
19Foster, A.S., Gejo, F. Lopez, Shluger, A.L. and Nieminen, R.M.: Mechanism of interstitial oxygen diffusion in hafnia. Phys. Rev. B 65, 174117 (2002).CrossRefGoogle Scholar
20Lee, T.A., Navrotsky, A. and Molodetsky, I.: Enthalpy of formation of cubic yttria-stabilized zirconia. J. Mater. Res. 18, 908 (2003).CrossRefGoogle Scholar
21Katagiri, S., Ishizawa, N. and Marumo, F.: A new high temperature modification of face-centered cubic Y2O3. Powder Diffraction 8, 60 (1993).CrossRefGoogle Scholar
22Stanek, C.R. and Grimes, R.W.: Prediction of rare earth A2Hf2O7 pyrochlore phases. J. Am. Ceram. Soc. 85, 2139 (2002).CrossRefGoogle Scholar
23Caillet, R.M., Deportes, C.H., Robert, G. and Vitter, G.: Structural study in system HfO2-Y2O3. Rev. Int. Haut. Temp. Refract. 4, 269 (1967).Google Scholar
24Duclot, M., Vicat, I. and Deportes, C.H.: Mise en evidence et etude de la phase ordonnée Y2Hf7O17 dans le système HfO2–Y2O3. J. Solid Sate Chem. 2, 236 (1970).CrossRefGoogle Scholar
25Hannon, R.Phase Equilibria in the Hafnia-Yttria System and Refinement of Some Zirconia Binary Systems. M.S. Dissertation, The Pennsylvania State University, State College, PA, 1985Google Scholar
26Goff, J.P., Hays, W., Hull, S., Hutchings, M.T. and Clauseen, K.N.: Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B 59, 14202 (1999).CrossRefGoogle Scholar
27Steele, D. and Fender, B.E.F.: The structure of cubic ZrO2:YO1.5 solid solutions by neutron scattering. J. Phys. C: Solid State Phys. 7, 1 (1974).CrossRefGoogle Scholar
28Gibson, I.R. and Irvine, J.T.S.: Study of Order/Disorder Transition in Yttria-stabilised Zironia by Neutron Diffraction. J. Mater. Chem. 6, 895 (1996).CrossRefGoogle Scholar
29Rao, J.C., Zhou, Y. and Li, D.X.: L12- and L10-like cation-ordered structures in ZrO2-Y2O3 ceramics. J. Mater. Res. 16, 1806 (2001).CrossRefGoogle Scholar
30Schieltz, J.D., Patterson, J.W. and Wilder, D.R.: Electrolytic behavior of yttria-stabilized hafnia. J. Electrochem. Soc. 118, 1257 (1971).CrossRefGoogle Scholar
31Kaufman, L. Calculation of Quasibinary and Quasiternary Ceramic Systems, in User Applications of Alloy PhaseDiagrams , edited by Kaufman, L. (ASM International, Materials Park, OH, 1987).Google Scholar