Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T18:32:21.796Z Has data issue: false hasContentIssue false

Emerging materials for microelectromechanical systems at elevated temperatures

Published online by Cambridge University Press:  01 August 2014

Jessica A. Krogstad
Affiliation:
Mechanical Engineering Department, Johns Hopkins University, Baltimore, Maryland, USA
Chris Keimel
Affiliation:
GE Global Research, Niskayuna, New York, USA
Kevin J. Hemker*
Affiliation:
Mechanical Engineering Department, Johns Hopkins University, Baltimore, Maryland, USA
*
a)Address all correspondence to this author. e-mail: hemker@jhu.edu
Get access

Abstract

Extension of microelectromechanical systems (MEMS) into more extreme operating conditions will require a wider range of material properties than are currently available in conventional systems. Successful integration of new materials is dependent on concurrent development of compatible fabrication routes and scale appropriate evaluation techniques. This review focuses on emerging material classes that have potential to replace silicon-based MEMS in elevated temperature applications. Basic silicon mechanical properties and micromachining methods are reviewed to provide context for developing material systems such as silicon carbide, silicon carbonitrides, and several nickel-based alloys. Potential improvements in strength, thermal stability, and reliability are juxtaposed with fabrication, reproducibility, and economic feasibility issues that must also be addressed.

Type
Reviews
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Spearing, S.M.: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48(1), 179196 (2000).CrossRefGoogle Scholar
Esashi, M.: Revolution of sensors in micro-electromechanical systems. Jpn. J. Appl. Phys. 51(8), 8 (2012).Google Scholar
Wilson, S.A., Jourdain, R.P.J., Zhang, Q., Dorey, R.A., Bowen, C.R., Willander, M., Wahab, Q.U., Al-hilli, S.M., Nur, O., Quandt, E., Johansson, C., Pagounis, E., Kohl, M., Matovic, J., Samel, B.R., van der Wijngaart, W., Jager, E.W.H., Carlsson, D., Djinovic, Z., Wegener, M., Moldovan, C., Iosub, R., Abad, E., Wendlandt, M., Rusu, C., and Persson, K.: New materials for micro-scale sensors and actuators: An engineering review. Mater. Sci. Eng., R 56(1–6), 1129 (2007).Google Scholar
Weiss, L.: Power production from phase change in MEMS and micro devices, a review. Int. J. Therm. Sci. 50(5), 639647 (2011).Google Scholar
Jensen, K.F.: Silicon-based microchemical systems: Characteristics and applications. MRS Bull. 31(2), 101107 (2006).CrossRefGoogle Scholar
Ponmozhi, J., Frias, C., Marques, T., and Frazao, O.: Smart sensors/actuators for biomedical applications: Review. Measurement 45(7), 16751688 (2012).Google Scholar
Ashton, K.: That Internet of Things Thing: In the real world, things matter more than ideas. RFID J. 22, June, 2009.Google Scholar
Witvrouw, A.: CMOS-MEMS integration today and tomorrow. Scr. Mater. 59(9), 945949 (2008).Google Scholar
Buchheit, T.E., LaVan, D.A., Michael, J.R., Christenson, T.R., and Leith, S.D.: Microstructural and mechanical properties investigation of electrode posited and annealed LIGA nickel structures. Metall. Mater. Trans. A 33(3), 539554 (2002).CrossRefGoogle Scholar
Cho, H.S., Hemker, K.J., Lian, K., Goettert, J., and Dirras, G.: Measured mechanical properties of LIGA Ni structures. Sens. Actuators, A 103(1–2), 5963 (2003).Google Scholar
Jacobson, S.A. and Epstein, A.H.: An informal survey of power MEMS. In Proceedings of the International Symposium on Micro-mechanical Engineering, Vol. 12, 2003; pp. 513519.Google Scholar
Chou, S.K., Yang, W.M., Chua, K.J., Li, J., and Zhang, K.L.: Development of micro power generators - A review. Appl. Energy 88(1), 116 (2011).Google Scholar
Epstein, A.H.: Millimeter-scale, MEMS gas turbine engines. In Proceedings of ASME Turbo Expo Collocated with the 2003 International Joint Power Generation Conference, American Society of Mechanical Engineers, 2003; pp. 669696.Google Scholar
Liamini, M., Shahriar, H., Vengallatore, S., and Fréchette, L.G.: Design methodology for a Rankine microturbine: Thermomechanical analysis and material selection. J. Microelectromech. Syst. 20(1), 339351 (2011).Google Scholar
Neudeck, P.G., Okojie, R.S., and Liang-Yu, C.: High-temperature electronics - A role for wide bandgap semiconductors? Proc. IEEE 90(6), 10651076 (2002).Google Scholar
Hemker, K.J. and Sharpe, W.N.: Microscale characterization of mechanical properties. Annu. Rev. Mater. Res. 37, 93126 (2007).Google Scholar
Madou, M.J.: Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, 2002).Google Scholar
Wise, K.D.: Special issue on integrated sensors, microactuators, & microsystems (MEMS). Proc. IEEE (1998).Google Scholar
Jensen, S.R., Yalçinkaya, A.D., Jacobsen, S.R., Rasmussen, T., Rasmussen, F.E., and Hansen, O.: Deep reactive ion etching for high aspect ratio microelectromechanical components. Phys. Scr. 2004(T114), 188 (2004).Google Scholar
Esashi, M. and Ono, T.: From MEMS to nanomachine. J. Phys. D: Appl. Phys. 38(13), R223R230 (2005).Google Scholar
Wu, B.Q., Kumar, A., and Pamarthy, S.: High aspect ratio silicon etch: A review. J. Appl. Phys. 108(5), 20 (2010).Google Scholar
Sharpe, W.N.: Mechanical properties of MEMS materials. In The MEMS Handbook, Vol. 3, 2002; pp. 133.Google Scholar
Sharpe, W.N. Jr., Bin, Y., Vaidyanathan, R., and Edwards, R.L.: Measurements of Young's modulus, Poisson's ratio, and tensile strength of polysilicon. In Proceedings of the Tenth IEEE International Workshop on Microelectromechanical Systems, MEMS '97, 1997; pp. 424429.Google Scholar
Jayaraman, S., Edwards, R., and Hemker, K.: Relating mechanical testing and microstructural features of polysilicon thin films. J. Mater. Res. 14(03), 688697 (1999).Google Scholar
DelRio, F.W., Friedman, L.H., Gaither, M.S., Osborn, W.A., and Cook, R.F.: Decoupling small-scale roughness and long-range features on deep reactive ion etched silicon surfaces. J. Appl. Phys. 114(11), 113506 (2013).CrossRefGoogle Scholar
Müller-Fiedler, R. and Knoblauch, V.: Reliability aspects of microsensors and micromechatronic actuators for automotive applications. Microelectron. Reliab. 43(7), 10851097 (2003).Google Scholar
Nakao, S., Ando, T., Shikida, M., and Satol, K.: Mechanical properties of a micron-sized SCS film in a high-temperature environment. J. Micromech. Microeng. 16(4), 715720 (2006).CrossRefGoogle Scholar
Sharpe, W.N.: Tensile testing of MEMS materials at high temperatures. In Advances in Experimental Mechanics IV, Vol. 34, Dulieu-Barton, J.M. and Quinn, S., eds., Trans Tech Publications Ltd: Stafa-Zurich, 2005; pp. 5964.Google Scholar
Ando, T., Shikida, M., and Sato, K.: Tensile-mode fatigue testing of silicon films as structural materials for MEMS. Sens. Actuators, A 93(1), 7075 (2001).Google Scholar
Muhlstein, C.L., Howe, R.T., and Ritchie, R.O.: Fatigue of polycrystalline silicon for microelectromechanical system applications: Crack growth and stability under resonant loading conditions. Mech. Mater. 36(1–2), 1333 (2004).Google Scholar
Alsem, D.H., Pierron, O.N., Stach, E.A., Muhlstein, C.L., and Ritchie, R.O.: Mechanisms for fatigue of micron-scale silicon structural films. Adv. Eng. Mater. 9(1–2), 1530 (2007).Google Scholar
Kahn, H., Avishai, A., Ballarini, R., and Heuer, A.: Surface oxide effects on failure of polysilicon MEMS after cyclic and monotonic loading. Scr. Mater. 59(9), 912915 (2008).Google Scholar
Kahn, H., Ballarini, R., and Heuer, A.: Dynamic fatigue of silicon. Curr. Opin. Solid State Mater. Sci. 8(1), 7176 (2004).Google Scholar
Romig, A.D., Dugger, M.T., and McWhorter, P.J.: Materials issues in microelectromechanical devices: Science, engineering, manufacturability and reliability. Acta Mater. 51(19), 58375866 (2003).Google Scholar
Zorman, C.A. and Mehregany, M.: Materials for microelectromechanical systems. The MEMS Handbook (CRC Press, 2001).Google Scholar
Sharpe, W.N.: Mechanical properties of MEMS materials. The MEMS Handbook (CRC Press, 2001).Google Scholar
El-Rifai, J., Sedky, S., Van Hoof, R., Severi, S., Lin, D., Sangameswaran, S., Puers, R., Van Hoof, C., and Witvrouw, A.: SiGe MEMS at processing temperatures below 250 °C. Sens. Actuators, A 188, 230239 (2012).Google Scholar
Sarro, P.M.: Silicon carbide as a new MEMS technology. Sens. Actuators, A 82(1–3), 210218 (2000).Google Scholar
Sharpe, W.N. Jr., Beheim, G., Nemeth, N., Evans, L., and Jadaan, O.: Strength of single-crystal silicon carbide microspecimens at room and high temperature. In Proceedings of the 2005 SEM Annual Conf., Portland, OR, 2005.Google Scholar
Wang, W-X., Niu, L-S., Zhang, Y-Y., and Lin, E-Q.: Tensile mechanical behaviors of cubic silicon carbide thin films. Comput. Mater. Sci. 62, 195202 (2012).Google Scholar
Mehregany, M. and Zorman, C.A.: SiC MEMS: Opportunities and challenges for applications in harsh environments. Thin Solid Films 355, 518524 (1999).Google Scholar
Jackson, K.M.: Fracture strength, elastic modulus and Poisson's ratio of polycrystalline 3C thin-film silicon carbide found by microsample tensile testing. Sens. Actuators, A 125(1), 3440 (2005).Google Scholar
Mehregany, M., Zorman, C.A., Rajan, N., and Wu, C.H.: Silicon carbide MEMS for harsh environments. Proc. IEEE 86(8), 15941610 (1998).Google Scholar
Zorman, C.A. and Parro, R.J.: Micro- and nanomechanical structures for silicon carbide MEMS and NEMS. Phys. Status Solidi B 245(7), 14041424 (2008).Google Scholar
Jiang, L. and Cheung, R.: A review of silicon carbide development in MEMS applications. Int. J. Comput. Mater. Sci. Surf. Eng. 2(3), 227242 (2009).Google Scholar
Stoldt, C.R., Carraro, C., Ashurst, W.R., Gao, D., Howe, R.T., and Maboudian, R.: A low-temperature CVD process for silicon carbide MEMS. Sens. Actuators, A 978, 410415 (2002).Google Scholar
Avram, M., Avram, A., Bragaru, A., Bangtao, C., Poenar, D.P., and Iliescu, C.: Low stress PECVD amorphous silicon carbide for MEMS applications. In Proceedings of the Semiconductor Conference (CAS), 2010 International, 2010; pp. 239242.Google Scholar
Zhao, F., Islam, M.M., and Huang, C.F.: Photoelectrochemical etching to fabricate single-crystal SiC MEMS for harsh environments. Mater. Lett. 65(3), 409412 (2011).Google Scholar
Hossain, T.K., MacLaren, S., Engel, J.M., Liu, C., Adesida, I., and Okojie, R.S.: The fabrication of suspended micromechanical structures from bulk 6H-SiC using an ICP-RIE system. J. Micromech. Microeng. 16(4), 751 (2006).Google Scholar
Rajan, N., Mehregany, M., Zorman, C.A., Stefanescu, S., and Kicher, T.P.: Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines. J. Microelectromech. Syst. 8(3), 251257 (1999).Google Scholar
Yoon, T.H., Lee, H.J., Yan, J., and Kim, D.P.: Fabrication of SiC-based ceramic microstructures from preceramic polymers with sacrificial templates and lithographic techniques - A review. J. Ceram. Soc. Jpn. 114(1330), 473479 (2006).Google Scholar
Ishikawa, T., Namazu, T., Yoshiki, K., Inoue, S., and Hasegawa, Y.: Polycarbosilane-derived silicon carbide MEMS component fabricated by slip casting with SU8 micro mold. In Proceedings of the Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on, 2010; pp. 416419.Google Scholar
Cimalla, V., Pezoldt, J., and Ambacher, O.: Group III nitride and SiC based MEMS and NEMS: Materials properties, technology and applications. J. Phys. D: Appl. Phys. 40(20), 6386 (2007).Google Scholar
Pearton, S., Ren, F., Wang, Y-L., Chu, B., Chen, K., Chang, C., Lim, W., Lin, J., and Norton, D.: Recent advances in wide bandgap semiconductor biological and gas sensors. Prog. Mater. Sci. 55(1), 159 (2010).Google Scholar
Davies, S., Huang, T.S., Gass, M.H., Papworth, A.J., Joyce, T.B., and Chalker, P.R.: Fabrication of GaN cantilevers on silicon substrates for microelectromechanical devices. Appl. Phys. Lett. 84(14), 25662568 (2004).Google Scholar
Wang, Y., Sasaki, T., Wu, T., Hu, F., and Hane, K.: Comb-drive GaN micro-mirror on a GaN-on-silicon platform. J. Micromech. Microeng. 21(3), 035012 (2011).Google Scholar
Goericke, F., Chan, M., Vigevani, G., Izyumin, I., Boser, B., and Pisano, A.: High temperature compatible aluminum nitride resonating strain sensor. In Proceedings of the Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 2011; pp. 19941997.CrossRefGoogle Scholar
Goericke, F.T., Vigevani, G., Izyumin, I.I., Boser, B.E., and Pisano, A.P.: Novel thin-film piezoelectric aluminum nitride rate gyroscope. In Proceedings of the Ultrasonics Symposium (IUS), 2012 IEEE International, 2012; pp. 10671070.Google Scholar
Pearton, S.J., Kang, B.S., Suku, K., Ren, F., Gila, B.P., Abernathy, C.R., Jenshan, L., and Chu, S.N.G.: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J. Phys. Condens. Matter 16(29), R961 (2004).Google Scholar
Liew, L.A., Zhang, W.G., An, L.N., Shah, S., Luo, R.L., Liu, Y.P., Cross, T., Dunn, M.L., Bright, V., Daily, J.W., Raj, R., and Anseth, K.: Ceramic MEMS - New materials, innovative processing and future applications. Am. Ceram. Soc. Bull. 80(5), 2530 (2001).Google Scholar
Colombo, P., Mera, G., Riedel, R., and Soraru, G.D.: Polymer-derived ceramics: 40 Years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93(7), 18051837 (2010).Google Scholar
Bill, J. and Aldinger, F.: Precursor-derived covalent ceramics. Adv. Mater. 7(9), 775787 (1995).Google Scholar
Liew, L-A., Liu, Y., Luo, R., Cross, T., An, L., Bright, V.M., Dunn, M.L., Daily, J.W., and Raj, R.: Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer. Sens. Actuators, A 95(2–3), 120134 (2002).Google Scholar
Liew, L.A., Zhang, W.G., Bright, V.M., An, L.N., Dunn, M.L., and Raj, R.: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique. Sens. Actuators, A 89(1–2), 6470 (2001).Google Scholar
Schulz, M., Börner, M., Göttert, J., Hanemann, T., Haußelt, J., and Motz, G.: Cross linking behavior of preceramic polymers effected by UV- and synchrotron radiation. Adv. Eng. Mater. 6(8), 676680 (2004).Google Scholar
Schulz, M.: Polymer derived ceramics in MEMS/NEMS - A review on production processes and application. Adv. Appl. Ceram. 108(8), 454460 (2009).Google Scholar
Greil, P.: Active-filler-controlled pyrolysis of preceramic polymers. J. Am. Ceram. Soc. 78(4), 835848 (1995).Google Scholar
Greil, P.: Near net shape manufacturing of polymer derived ceramics. J. Eur. Ceram. Soc. 18(13), 19051914 (1998).Google Scholar
Bright, V.M., Raj, R., Dunn, M.L., and Daily, J.W.: Injectable ceramic microcast silicon carbonitride (SiCN) microelectromechanical system (MEMS) for extreme temperature environments with extension: Micro packages for nano-devices. Colorado University at Boulder Office of Contracts and Grants, 2004.Google Scholar
Jung, S., Seo, D., Lombardo, S.J., Feng, Z.C., Chen, J.K., and Zhang, Y.: Fabrication using filler controlled pyrolysis and characterization of polysilazane PDC RTD arrays on quartz wafers. Sens. Actuators, A 175, 5359 (2012).Google Scholar
Liu, Y.P., Liew, L.A., Luo, R.L., An, L.N., Dunn, M.L., Bright, V.M., Daily, J. W., and Raj, R.: Application of microforging to SiCN MEMS fabrication. Sens. Actuators, A 95(2–3), 143151 (2002).Google Scholar
Zhang, D., Su, B., and Button, T.W.: Microfabrication of three-dimensional, free-standing ceramic MEMS components by soft moulding. Adv. Eng. Mater. 5(12), 924927 (2003).Google Scholar
Lee, D-H., Park, K-H., Hong, L-Y., and Kim, D-P.: SiCN ceramic patterns fabricated by soft lithography techniques. Sens. Actuators, A 135(2), 895901 (2007).Google Scholar
Probst, D., Hoche, H., Zhou, Y., Hauser, R., Stelzner, T., Scheerer, H., Broszeit, E., Berger, C., Riedel, R., Stafast, H., and Koke, E.: Development of PE-CVD Si/C/N: H films for tribological and corrosive complex-load conditions. Surf. Coat. Technol. 200(1–4), 355359 (2005).Google Scholar
Ma, S., Xu, B., Wu, G., Wang, Y., Ma, F., Ma, D., Xu, K., and Bell, T.: Microstructure and mechanical properties of SiCN hard films deposited by an arc enhanced magnetic sputtering hybrid system. Surf. Coat. Technol. 202(22–23), 53795382 (2008).Google Scholar
Bhattacharyya, A.S. and Mishra, S.K.: Micro/nanomechanical behavior of magnetron sputtered Si-C-N coatings through nanoindentation and scratch tests. J. Micromech. Microeng. 21(1), 015011 (2011).Google Scholar
Hutchison, D.N., Morrill, N.B., Aten, Q., Turner, B.W., Jensen, B.D., Howell, L.L., Vanfleet, R.R., and Davis, R.C.: Carbon nanotubes as a framework for high-aspect-ratio MEMS fabrication. J. Microelectromech. Syst. 19(1), 7582 (2010).Google Scholar
Malek, C.K. and Saile, V.: Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review. Microelectron. J. 35(2), 131143 (2004).Google Scholar
Ebrahimi, F., Bourne, G.R., Kelly, M.S., and Matthews, T.E.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11(3), 343350 (1999).Google Scholar
Hemker, K.J. and Last, H.: Microsample tensile testing of LIGA nickel for MEMS applications. Mater. Sci. Eng., A 319, 882886 (2001).Google Scholar
Collins, J.G., Wright, M., and Muhlstein, C.L.: Cyclic stabilization of electrodeposited nickel structural films. J. Microelectromech. Syst. 20(3), 753763 (2011).Google Scholar
Rupert, T.J. and Schuh, C.A.: Mechanically driven grain boundary relaxation: A mechanism for cyclic hardening in nanocrystalline Ni. Philos. Mag. Lett. 92(1), 2028 (2012).Google Scholar
Christenson, T.R., Buchheit, T.E., Schmale, D.T., and Bourcier, R.J.: Mechanical and metallographic characterization of LIGA fabricated nickel and 80%Ni-20%Fe permalloy. MRS Online Proc. Libr. 518(1), (1998).Google Scholar
Yamasaki, T.: High-strength nanocrystalline Ni-W alloys produced by electrodeposition and their embrittlement behaviors during grain growth. Scr. Mater. 44(8–9), 14971502 (2001).Google Scholar
Buchheit, T.E., Glass, S.J., Sullivan, J.R., Mani, S.S., Lavan, D.A., Friedmann, T.A., and Janek, R.: Micromechanical testing of MEMS materials. J. Mater. Sci. 38(20), 40814086 (2003).Google Scholar
Goods, S., Kelly, J., and Yang, N.: Electrodeposited nickel-manganese: An alloy for microsystem applications. Microsyst. Technol. 10(6–7), 498505 (2004).Google Scholar
Kelly, J., Goods, S., and Yang, N.: High performance nanostructured Ni-Mn alloy for microsystem applications. Electrochem. Solid-State Lett. 6(6), C88C91 (2003).Google Scholar
Hearne, S.J., de Boer, M.P., Kotula, P.G., Dyck, C.W., Foiles, S.M., Follstaedt, D.M., and Buchheit, T.E.: Novel In Situ Mechanical Testers to Enable Integrated Metal Surface Micro-Machines (Sandia National Laboratories, 2005).Google Scholar
Talin, A.A., Marquis, E.A., Goods, S.H., Kelly, J.J., and Miller, M.K.: Thermal stability of Ni-Mn electrodeposits. Acta Mater. 54(7), 19351947 (2006).Google Scholar
Hibbard, G.D., Aust, K.T., and Erb, U.: Thermal stability of electrodeposited nanocrystalline Ni–Co alloys. Mater. Sci. Eng, A 433(1–2), 195202 (2006).Google Scholar
Haj-Taieb, M., Haseeb, A., Caulfield, J., Bade, K., Aktaa, J., and Hemker, K.J.: Thermal stability of electrodeposited LIGA Ni-W alloys for high temperature MEMS applications. Microsyst. Technol. 14(9–11), 15311536 (2008).Google Scholar
Suresha, S.J., Haj-Taieb, M., Bade, K., Aktaa, J., and Hemker, K.J.: The influence of tungsten on the thermal stability and mechanical behavior of electrodeposited nickel MEMS structures. Scr. Mater. 63(12), 11411144 (2010).Google Scholar
Haseeb, A. and Bade, K.: LIGA fabrication of nanocrystalline Ni-W alloy micro specimens from ammonia-citrate bath. Microsyst. Technol. 14(3), 379388 (2008).Google Scholar
Shacham-Diamand, Y. and Sverdlov, Y.: Electrochemically deposited thin film alloys for ULSI and MEMS applications. Microelectron. Eng. 50(1–4), 525531 (2000).Google Scholar
Choi, P., Al-Kassab, T., Gärtner, F., Kreye, H., and Kirchheim, R.: Thermal stability of nanocrystalline nickel-18 at.% tungsten alloy investigated with the tomographic atom probe. Mater. Sci. Eng., A 353(1–2), 7479 (2003).Google Scholar
Schuh, C.A., Nieh, T.G., and Iwasaki, H.: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51(2), 431443 (2003).CrossRefGoogle Scholar
Keimel, C.F., Aimi, M.F., Bansal, S., Corderman, R.R., Kishore, K.V.S.R., Reddy, E.S., Saha, A., Subramanian, K., Thakre, P., and Corwin, A.D.: Switch Structure and Method. US Patent 2011/0067983, March 24, 2011.Google Scholar
Fleischer, R.L.: Solid-solution hardening. In The Strengthening of Metals. (Reinhold Publishing Co., New York, NY, 1964).Google Scholar
Rupert, T.J., Trenkle, J.C., and Schuh, C.A.: Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 59(4), 16191631 (2011).Google Scholar
Detor, A.J., Miller, M.K., and Schuh, C.A.: Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86(28), 44594475 (2006).Google Scholar
Detor, A.J. and Schuh, C.A.: Microstructural evolution during the heat treatment of nanocrystalline alloys. J. Mater. Res. 22(11), 32333248 (2007).Google Scholar
Borgia, C., Scharowsky, T., Furrer, A., Solenthaler, C., and Spolenak, R.: A combinatorial study on the influence of elemental composition and heat treatment on the phase composition, microstructure and mechanical properties of Ni-W alloy thin films. Acta Mater. 59(1), 386399 (2011).Google Scholar
Miyamoto, H., Takehara, S., Uenoya, T., Fujiwara, H., and Goto, T.: Nanocrystalline nickel dispersed with nano-size WO3 particles synthesized by electrodeposition. J. Mater. Sci. 47(12), 47984804 (2012).Google Scholar
Balaraju, J., Manikandanath, N., and William Grips, V.: Phase transformation behavior of nanocrystalline Ni-W-P alloys containing various W and P contents. Surf. Coat. Technol. 206(10), 26822689 (2013).Google Scholar
He, F., Yang, J., Lei, T., and Gu, C.: Structure and properties of electrodeposited Fe-Ni-W alloys with different levels of tungsten content: A comparative study. Appl. Surf. Sci. 253(18), 75917598 (2007).Google Scholar
Goward, G. and Boone, D.: Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys. Oxid. Met. 3(5), 475495 (1971).Google Scholar
Mevrel, R., Duret, C., and Pichoir, R.: Pack cementation processes. Mater. Sci. Technol. 2(3), 201206 (1986).Google Scholar
Nicholls, J. and Stephenson, D.: High temperature coatings for gas turbines. Met. Mater. 7(3), 156163 (1991).Google Scholar
Hodge, A.M. and Dunand, D.C.: Synthesis of nickel-aluminide foams by pack-aluminization of nickel foams. Intermetallics 9(7), 581589 (2001).Google Scholar
Dunand, D.C., Hodge, A.M., and Schuh, C.: Pack aluminisation kinetics of nickel rods and foams. Mater. Sci. Technol. 18(3), 326332 (2002).Google Scholar
Johnson, S.J., Tryon, B., and Pollock, T.M.: Post-fabrication vapor phase strengthening of nickel-based sheet alloys for thermostructural panels. Acta Mater. 56(17), 45774584 (2008).Google Scholar
Perez-Bergquist, S.J., Vermaak, N., and Pollock, T.M.: High-temperature performance of actively cooled vapor phase strengthened nickel-based thermostructural panels. AIAA J. 49(5), 10801086 (2011).Google Scholar
Burns, D.E., Zhang, Y., Teutsch, M., Bade, K., Aktaa, J., and Hemker, K.J.: Development of Ni-based superalloys for microelectromechanical systems. Scr. Mater. 67(5), 459462 (2012).Google Scholar
Burns, D.M.: Processing and Characterization of Ni-based Superalloy Micro-components and Films for MEMS Applications. Doctoral Dissertation, Department of Mechanical Engineering. Johns Hopkins University, Baltimore, MD, 2012.Google Scholar
Choe, H. and Dunand, D.C.: Synthesis, structure, and mechanical properties of Ni-Al and Ni-Cr-Al superalloy foams. Acta Mater. 52(5), 12831295 (2004).Google Scholar
Liu, L., Li, Y., and Wang, F.: Influence of grain size on the corrosion behavior of a Ni-based superalloy nanocrystalline coating in NaCl acidic solution. Electrochim. Acta 53(5), 24532462 (2008).Google Scholar
Hanyi, L., Fuhui, W., Bangjie, X., and Lixin, Z.: High-temperature oxidation resistance of sputtered micro-grain superalloy K38G. Oxid. Met. 38(3), 299307 (1992).Google Scholar
Lou, H., Wang, F., Zhu, S., Xia, B., and Zhang, L.: Oxide formation of K38G superalloy and its sputtered micrograined coating. Surf. Coat. Technol. 63(1–2), 105114 (1994).Google Scholar
Burns, D.M., Zhang, Y., Weihs, T.P., and Hemker, K.J.: Sputtered Ni-based superalloys for microscale devices. In Proceedings of the Superalloys 2012: 12th International Symposium on Superalloys, Huron, E.S., ed., Champion, PA, 2012; pp. 569576.Google Scholar
Oradei-Basile, A. and Radavich, J.F.: A current TTT diagram for wrought alloy 718. Superalloys 718(625), 325335 (1991).Google Scholar
Sharpe, W.N.: Murray lecture - Tensile testing at the micrometer scale: Opportunities in experimental mechanics. Exp. Mech. 43(3), 228237 (2003).Google Scholar
Azevedo, R.G., Jones, D.G., Jog, A.V., Jamshidi, B., Myers, D.R., Li, C., Xiao-An, F., Mehregany, M., Wijesundara, M.B.J., and Pisano, A.P.: A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens. J. 7(4), 568576 (2007).Google Scholar
Förster, C., Cimalla, V., Lebedev, V., Pezoldt, J., Brueckner, K., Stephan, R., Hein, M., Aperathitis, E., and Ambacher, O.: Group III-nitride and SiC based micro- and nanoelectromechanical resonators for sensor applications. Phys. Status Solidi A 203(7), 18291833 (2006).Google Scholar