Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T10:45:52.235Z Has data issue: false hasContentIssue false

Electromechanical study of carbon fiber composites

Published online by Cambridge University Press:  31 January 2011

Xiaojun Wang
Affiliation:
Composite Materials Research Laboratory, State University of New York at Buffalo, Buffalo, New York 14260–4400
Xuli Fu
Affiliation:
Composite Materials Research Laboratory, State University of New York at Buffalo, Buffalo, New York 14260–4400
D. D. L. Chung
Affiliation:
Composite Materials Research Laboratory, State University of New York at Buffalo, Buffalo, New York 14260–4400
Get access

Abstract

Electromechanical testing involving simultaneous electrical and mechanical measurements under load was used to study the fiber-matrix interface, the fiber residual compressive stress, and the degree of marcelling (fiber waviness) in carbon fiber composites. The interface study involved single fiber pull-out testing while the fiber-matrix contact electrical resistivity was measured. The residual stress study involved measuring the electrical resistance of a single fiber embedded in the matrix while the fiber was subjected to tension through its exposed ends. The marcelling study involved measuring the electrical resistance of a composite in the through-thickness direction while tension within the elastic regime was applied in the fiber direction.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jawad, S. A., Ahmad, M., Ramadin, Y., Zihlif, A, A. Paesano, Martuscelli, E., and Ragosta, G., Polymer Int. 32 (1), 23 (1993).CrossRefGoogle Scholar
2.Hsiao, H. M and Daniel, I. M., Composites A 27 (10), 931 (1996).CrossRefGoogle Scholar
3.Fu, X. and Chung, D. D. L., Composite Interfaces 4 (4), 197 (1997).Google Scholar
4.Chen, P. and Chung, D. D. L., Composites: Part B 27B, 269 (1996).CrossRefGoogle Scholar
5.Chen, P. and Chung, D. D. L., Composites: Part B 27B, 11 (1996).CrossRefGoogle Scholar
6.Fu, X. and Chung, D. D. L., Cem. Concr. Res. 26 (1), 15 (1996).CrossRefGoogle Scholar
7.Chen, P. and Chung, D. D. L., ACI Mater. J. 93 (2), 129 (1996).Google Scholar
8.ACI SP-142, Fiber Reinforced Concrete, edited by Daniel, James I. and Shah, Surendra P., ACI, Detroit (1994).Google Scholar
9.Hannant, D. J., Mater. Sci. Technol. 11, 853 (1995).CrossRefGoogle Scholar
10.Banthia, N, Moncef, A., Chokri, K., and Sheng, J., Can. J. Civ. Eng. 21, 999 (1994).CrossRefGoogle Scholar
11.Padron, Isabel and Zollo, Ronald F., ACI Mater. J. 87, 327 (1990).Google Scholar
12.Hoecker, F. and Karger-Kocsis, J., J. Appl. Polym. Sci. 59, 139 (1996).3.0.CO;2-V>CrossRefGoogle Scholar
13.Chiang, Hung-Lung, Chiang, P. C., and You, J. H., Toxicological Environ. Chem. 47 (1–2), 97 (1995).CrossRefGoogle Scholar
14.Krekel, G., Hüuttinger, K. J., Hoffman, W. P., and Silver, D. S., J. Mater. Sci. 29, 2968 (1994).CrossRefGoogle Scholar
15.Fu, X. and Chung, D. D. L., Cem. Concr. Res. 27 (12), 1805 (1997).CrossRefGoogle Scholar
16.Fu, X. and Chung, D. D. L., Cem. Concr. Res. 26 (10), 1485 (1996).CrossRefGoogle Scholar
17.Crasto, A. S and Kim, R. Y., Proc. Am. Soc. Composites, 8th Tech. Conf. (Technomic Pub. Co., Lancaster, PA, 1994), pp. 162173.Google Scholar
18.Fan, C. F and Hsu, S. L., J. Polym. Sci.: Part B 27 (2), 337 (1989).CrossRefGoogle Scholar
19.Grubb, D. T. and Li, Z., J. Mater. Sci. 29 (1), 203 (1994).CrossRefGoogle Scholar
20.Kim, K. S and Hahn, H. T., Composites Sci. Technol. 36 (2), 121 (1989).CrossRefGoogle Scholar
21.Wang, X. and Chung, D. D. L., Carbon 35 (5), 706 (1997).CrossRefGoogle Scholar
22.Feltman, R. S and Santare, M. H., Composites Manuf. 5 (4), 203 (1994).CrossRefGoogle Scholar
23.Schulte, K. and Baron, Ch., Composites Sci. Technol. 36, 63 (1989).CrossRefGoogle Scholar