Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T15:09:16.936Z Has data issue: false hasContentIssue false

Electrical transport measurements of highly conductive nitrogen-doped multiwalled carbon nanotubes/poly(bisphenol A carbonate) composites

Published online by Cambridge University Press:  09 November 2011

Jamal A. Talla*
Affiliation:
Department of Physics, King Faisal University, Al-Ahsa 31982, Kingdom of Saudi Arabia
Donghui Zhang
Affiliation:
Department of Chemistry, Louisiana State University, New Orleans, Louisiana 70803
Seamus A. Curran
Affiliation:
Department of Physics, University of Houston, Houston, Texas 77004
*
a)Address all correspondence to this author. e-mail: jtalla@kfu.edu.sa
Get access

Abstract

Nitrogen-doped multiwalled carbon nanotubes with poly(bisphenol A carbonate) composites were prepared through simple solution blending. The scaling law, which is based on the percolation theory, is used to describe the electrical conductivities of the composites. Both direct current and alternating current conductivities are in good agreement with the unprecedented high saturated conductivities of the pristine samples (σsat = ∼734 s·cm−1, pc = 0.19 wt%). We attributed the high conductivities to the binding of nanotubes into large but tight bundles, which enable the composites to carry more charges. This is notably different from the conventional method, which focuses on forming a well-dispersed three-dimensional network resulting in the conductivities having a lower order of magnitude.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56 (1991).Google Scholar
2.Iijima, S. and Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603 (1993).CrossRefGoogle Scholar
3.Liao, K-S., Talla, J.A., Yambem, S.D., Birx, D., Chen, G., Coldren, F., Carroll, D.L., Ci, L., Ajayan, P.M., Zhang, D., and Curran, S.A.: Formation of highly conductive composite coatings and their applications to broadband antennas and mechanical transducers. J. Mater. Res. 25(9), 1741 (2010).Google Scholar
4.Curran, S.A., Talla, J., Dias, S., Zhang, D., Carroll, D., and Birx, D.: Electrical transport measurements of highly conductive carbon nanotube/poly(bisphenol A carbonate) composite. J. Appl. Phys. 105(7), 073711 (2009).CrossRefGoogle Scholar
5.Fragneaud, B., Masenelli-Varlot, K., González-Montiel, A., Terrones, M., and Cavaillé, J-Y.: Electrical behavior of polymer grafted nanotubes/polymer nanocomposites using N-doped carbon nanotubes. Chem. Phys. Lett. 444(1–3), 1 (2007).CrossRefGoogle Scholar
6.Fragneaud, B., Masenelli-Varlot, K., Gonzalez-Montiel, A., Terrones, M., and Cavaillé, J-Y.: Efficient coating of N-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization. Chem. Phys. Lett. 419(4), 567 (2006).Google Scholar
7.Ayala, P., Freire, J.F.L., Gu, L., Smith, D.J., Solŕzano, I.G., Macedo, D.W., Sande, J.B.V., Terrones, H., Rodriguez-Manzo, J., and Terrones, M.: Decorating carbon nanotubes with nanostructured nickel particles via chemical methods. Chem. Phys. Lett. 431, 1, 104 (2006).Google Scholar
8.Redlich, P., Loeffler, J., Ajayan, P.M., Bill, J., Aldinger, F., and Rühle, M.: B—C—N nanotubes and boron doping of carbon nanotubes. Chem. Phys. Lett. 260, 3, 465 (1996).CrossRefGoogle Scholar
9.Ghosh, K., Kumar, M., Maruyama, T., and Ando, Y.: Controllable growth of highly N-doped carbon nanotubes from imidazole: A structural, spectroscopic and field-emission study. J. Mater. Chem. 20(20), 4128 (2010).Google Scholar
10.Katsuno, T. and Nitta, S.: Properties of amorphous carbon nitride a-CNx films prepared by the layer-by-layer method. Diamond Relat. Mater. 12(10–11), 1887 (2003).Google Scholar
11.Kurt, R., Sanjines, R., Karimi, A., and Lévy, F.: Structural and mechanical properties of CNx thin films prepared by magnetron sputtering. Diamond Relat. Mater. 9(3–6), 566 (2000).Google Scholar
12.Guo, H., Sreekumar, T.V., Liu, T., Minus, M., and Kumar, S.: Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films. Polymer 46, 3001 (2005).Google Scholar
13.Mottaghitalab, V., Spinks, G.M., and Wallace, G.G.: The development and characterisation of polyaniline—single walled carbon nanotube composite fibres using 2-acrylamido-2 methyl-1-propane sulfonic acid (AMPSA) through one step wet spinning process. Polymer 47, 4996 (2006).Google Scholar
14.Kim, H.M., Choi, M-S., Joo, J., Cho, S.J., and Yoon, H.S.: Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites. Phys. Rev. B 74(5), 054202 (2006).CrossRefGoogle Scholar
15.Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Kinloch, I.A., Bauhofer, W., Windle, A.H., and Schulte, K.: Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6), 2036 (2006).CrossRefGoogle Scholar
16.Kovacs, J.Z., Velagala, B.S., Schulte, K., and Bauhofer, W.: Two percolation thresholds in carbon nanotube epoxy composites. Compos. Sci. Technol. 67(5), 922 (2007).CrossRefGoogle Scholar
17.Kilbride, B.E., Coleman, J.N., Fraysse, J., Fournet, P., Cadek, M., Drury, A., Hutzler, S., Roth, S., and Blau, W.J.: Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J. Appl. Phys. 92, 4024 (2002).Google Scholar
18.Barrau, S., Demont, P., Peigney, A., Laurent, C., and Lacabanne, C.: DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules 36, 5187 (2003).Google Scholar
19.Dutta, P., Biswas, S., Ghosh, M., De, S.K., and Chatterjee, S.: The dc and ac conductivity of polyaniline–polyvinyl alcohol blends. Synth. Met. 122, 455 (2001).Google Scholar
20.Coleman, J.N., Curran, S., Dalton, A.B., Davey, A.P., McCarthy, B., Blau, W., and Barklie, R.C.: Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Phys. Rev. B 58, R7492 (1998).Google Scholar
21.Mamunya, Y.P., Muzychenko, Y.V., Pissis, P., Lebedev, E.V., and Shut, M.I.: Processing, structure, and electrical properties of metal-filled polymers. J. Macromol. Sci., Phys. 40, 591 (2001).CrossRefGoogle Scholar
22.Dutta, P., Biswas, S., and De, S.K.: Alternating-current conductivity and dielectric permittivity of polyaniline doped with β-naphthalene sulphonic acid. J. Phys. Condens. Matter 13, 9187 (2001).CrossRefGoogle Scholar
23.Lipson, S.M., Coleman, J.N., Drury, A., O’Brien, D.F., Blau, W.J., Cadby, A.J., Lane, P.A., and Bradley, D.D.C.: Alternating and direct current characterization and photoinduced absorption studies of modified conjugated polymer thin films. J. Appl. Phys. 95, 6138 (2004).Google Scholar
24.Mclachlan, D.S., Chiteme, C., Park, C., Wise, K.E., Lowther, S.E., Lillehel, P.T., Siochi, E.J., and Harrison, J.S.: AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J. Polym. Sci., Part B: Polym. Phys. 43, 3273 (2005).Google Scholar
25.Hornbostel, B., Poetschke, P., Kotz, J., and Roth, S.: Single-walled carbon nanotubes/polycarbonate composites. Basic electrical and mechanical properties. Phys. Status Solidi B 243(13), 3445 (2006).Google Scholar
26.Das, A., Mahaling, R.N., Stöckelhuber, K.W., and Heinrich, G.: Reinforcement and migration of nanoclay in polychloroprene/ethylene-propylene-diene-monomer rubber blends. Compos. Sci. Technol. 71(3), 276 (2011).Google Scholar
27.Li, H.J., Lu, W.G., Li, J.J., Bai, X.D., and Gu, C.Z.: Multichannel ballistic transport in multiwall carbon nanotubes. Phys. Rev. Lett. 95(8), 086601 (2005).CrossRefGoogle ScholarPubMed
28.White, C.T. and Todorov, T.N.: Carbon nanotubes as long ballistic conductors. Nature 393(6682), 240 (1998).Google Scholar
29.Curran, S.A., Zhang, D., Wondmagegn, W.T., Ellis, A.V., Cech, J., Roth, S., and Carroll, D.L.: Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding. J. Mater. Res. 21(4), 1071 (2006).Google Scholar
30.Choi, H.J., Ihm, J., Yoon, Y-G., and Louie, S.G.: Possible explanation for the conductance of a single quantum unit in metallic carbon nanotubes. Phys. Rev. B 60(20), R14009 (1999).CrossRefGoogle Scholar
31.Curran, S.A., Talla, J.A., Zhang, D., and Carroll, D.L.: Defect-induced vibrational response of multi-walled carbon nanotubes using resonance Raman spectroscopy. J. Mater. Res. 20(12), 3368 (2005).Google Scholar
32.Talla, J., Zhang, D., Kandadai, M., Avadhanula, A., and Curran, S.: A resonance Raman study of carboxyl induced defects in single-walled carbon nanotubes. Physica B 405, 4570 (2010).Google Scholar
33.Sundaray, B., Subramanian, V., Natarajan, T.S., and Krishnamurthy, K.: Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appl. Phys. Lett. 88(14), 143114 (2006).CrossRefGoogle Scholar