Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T02:49:42.608Z Has data issue: false hasContentIssue false

Effects of high-temperature ambient on cyclic fatigue of La0.8Sr0.2MnO3+δ

Published online by Cambridge University Press:  15 August 2011

Makoto Tanaka*
Affiliation:
Japan Fine Ceramics Center, Atsuta-ku, Nagoya 456-8587, Japan
Tsuneaki Matsudaira
Affiliation:
Japan Fine Ceramics Center, Atsuta-ku, Nagoya 456-8587, Japan
Daisuke Igimi
Affiliation:
Japan Fine Ceramics Center, Atsuta-ku, Nagoya 456-8587, Japan
Satoshi Kitaoka
Affiliation:
Japan Fine Ceramics Center, Atsuta-ku, Nagoya 456-8587, Japan
*
a)Address all correspondence to this author. e-mail: m_tanaka@jfcc.or.jp
Get access

Abstract

The effects of water vapor and oxygen on the cyclic fatigue behavior of oxygen-excess La0.8Sr0.2MnO3+δ (LSM) were investigated under three-point bending at 1273 K. Because the fatigue life did not obviously depend on the number of cycles, which also represented the effective time of the applied stress, the fracture was presumed to not be significantly controlled by stress-corrosion cracking. Under a low oxygen partial pressure (), however, wet exposure inhibited both fatigue fracture and permanent deformation, in which the LSM crystal lattice was distorted and the unit cell free volume was reduced. Under a high , on the contrary, the crystal symmetry was increased by the wet exposure. The inhibition of fatigue fracture and deformation at both high and low was probably caused by retardation of lanthanum diffusion through its vacancies.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schwartze, J.P. and Bröcker, S.: The evaporation of water into air of different humidities and the inversion temperature phenomenon. Int. J. Heat Mass Transfer 43, 1791 (2000).CrossRefGoogle Scholar
2.Iyota, H., Nishimura, N., Onuma, T., and Nomura, T.: Drying of sliced raw potatoes in superheated steam and hot air. Drying Tech. 19, 1411 (2001).CrossRefGoogle Scholar
3.Kitaoka, S., Wada, M., Kawashima, N., Osa, N., and Nagai, T.: Development of ceramic induction heater. FC Report. Jpn. Fine Ceram. Assoc. 28, 145 (2010).Google Scholar
4.Minh, N.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
5.Urushibara, A., Morimoto, Y., Arima, T., Asamitsu, A., Kido, G., and Tokura, Y.: Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Phys. Rev. B 51, 14103 (1995).CrossRefGoogle ScholarPubMed
6.van Roosmalen, J.A.M., Cordfunke, E.H.P., Helmholdt, R.B., and Zandbergen, H.W.: The defect chemistry of LaMnOδ: 2. Structural aspects of LaMnOδ. J. Solid State Chem. 110, 100 (1994).CrossRefGoogle Scholar
7.Alonso, J.A., Martínez-Lope, M.J., Casais, M.T., MacManus-Driscoll, J.L., de Silva, P.S.I.P.N., Cohen, L.F., and Fernández-Díaz, M.T.: Non-stoichiometry, structural defects and properties of LaMnO3+δ with high δ values (0.11≤d≤0.29). J. Mater. Chem. 7, 2139 (1997).CrossRefGoogle Scholar
8.Tofield, B.C. and Scott, W.R.: Oxidative nonstoichiometry in perovskites, an experimental survey; the defect structure of an oxidized lanthanum manganite by powder neutron diffraction. J. Solid State Chem. 10, 183 (1974).CrossRefGoogle Scholar
9.Mitchell, J.F., Argyriou, D.N., Potter, C.D., Hinks, D.G., Jorgensen, J.D., and Bader, S.D.: Structural phase diagram of La1-xSrxMnO3+δ: Relationship to magnetic and transport properties. Phys. Rev. B 54, 6172 (1996).CrossRefGoogle Scholar
10.De Souza, R.A., Islam, M.S., and Ivers-Tiffée, E.: Formation and migration of cation defects in the perovskite oxide LaMnO3. J. Mater. Chem. 9, 1621 (1999).CrossRefGoogle Scholar
11.van Roosmalen, J.A.M., and Cordfunke, E.H.P.: The defect chemistry of LaMnOδ: 4. Defect model for LaMnOδ. J. Solid State Chem. 110, 109 (1994).CrossRefGoogle Scholar
12.Kamata, H., Yonemura, Y., Mizusaki, J., Tagawa, H., Naraya, K., and Sasamoto, T.: High temperature electrical properties of the perovskite-type oxide La1-xSrxMnO3-d. J. Phys. Chem. Solids 56, 943 (1995).CrossRefGoogle Scholar
13.Mizusaki, J., Mori, N., Takai, H., Yonemura, Y., Minamiue, H., Tagawa, H., Dokiya, M., Inaba, H., Naraya, K., Sasamoto, T., and Hashimoto, T.: Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1-xSrxMnO3+d. Solid State Ionics 129, 163 (2000).CrossRefGoogle Scholar
14.Mizusaki, J., Yonemura, Y., Kamata, H., Ohyama, K., Mori, N., Takai, H., Tagawa, H., Dokiya, M., Naraya, K., Sasamoto, T., Inaba, H., and Hashimoto, T.: Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3. Solid State Ionics 132, 167 (2000).CrossRefGoogle Scholar
15.Miyoshi, S., Hong, J.-O., Yashiro, K., Kaimai, A., Nigara, Y., Kawamura, K., Kawada, T., and Mizusaki, J.: Lattice creation and annihilation of LaMnO3+δ caused by nonstoichiometry change. Solid State Ionics 154155, 257 (2002).CrossRefGoogle Scholar
16.Nakamura, K. and Ogawa, K.: Excess oxygen in LaMnO3+δ. J. Solid State Chem. 163, 65 (2002).CrossRefGoogle Scholar
17.Cook, R.E., Goretta, K.C., Wolfenstine, J., Nash, P., and Routbort, J.L.: High-temperature deformation and defect chemistry of (La1-xSrx)1-yMnO3+δ. Acta Mater. 47, 2969 (1999).CrossRefGoogle Scholar
18.Routbort, J.L., Goretta, K.C., Cook, R.E., and Wolfenstine, J.: Deformation of perovskite electronic ceramics—A review. Solid State Ionics 129, 53 (2000).CrossRefGoogle Scholar
19.Atkinson, A. and Selçuk, A.: Mechanical behavior of ceramic oxygen ion-conducting membranes. Solid State Ionics 134, 59 (2000).CrossRefGoogle Scholar
20.D’Souza, C.M. and Sammes, N.M.: Mechanical properties of strontium-doped lanthanum manganite. J. Am. Ceram. Soc. 83, 47 (2000).CrossRefGoogle Scholar
21.Meixner, D.L. and Cutler, R.A.: Sintering and mechanical characteristics of lanthanum strontium manganite. Solid State Ionics 146, 273 (2002).CrossRefGoogle Scholar
22.Wiederhorn, S.M., Fuller, E.R., and Thomson, R.: Micromechanisms of crack growth in ceramics and glasses in corrosive environment. Meat Sci. 14, 450 (1980).CrossRefGoogle Scholar
23.Freiman, S.W.: Environmentally enhanced fracture of ceramics, in Materials Stability and Environmental Degradation, edited by Barkatt, A., Verink, E.D. Jr., and Smith, L.R. (Mater. Res. Soc. Symp. Proc. 125, Pittsburgh, PA, 1988), p. 205.Google Scholar
24.Srawley, J.E.: Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens. Int. J. Fract. 12, 475 (1976).CrossRefGoogle Scholar
25.Wiederhorn, S.M. and Bolz, L.H.: Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 53, 543 (1970).CrossRefGoogle Scholar
26.Andersen, I.G.K., Andersen, E.K., Norby, P., and Skou, E.: Determination of stoichiometry in lanthanum strontium manganates(III)(IV) by wet chemical methods. J. Solid State Chem. 113, 320 (1994).CrossRefGoogle Scholar
27.Sammells, A.F., Cook, R.L., White, J.H., Osborne, J.J., and MacDuff, R.C.: Relational selection of advanced solid electrolytes for intermediate temperature fuel cells. Solid State Ionics 52, 111 (1992).CrossRefGoogle Scholar
28.Nomura, K., and Tanase, S.: Electrical conduction behavior in (La0.9Sr0.1)MIIIO3-δ(MIII=Al, Ga, Sc, In, and Lu) perovskites. Solid State Ionics 98, 229 (1997).CrossRefGoogle Scholar
29.Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar