Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:18:56.673Z Has data issue: false hasContentIssue false

Effect of solution pH on the accelerated cracking of nanoporous thin-film glasses

Published online by Cambridge University Press:  01 March 2005

Eric P. Guyer
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Reinhold H. Dauskardt*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
*
a)Address all correspondence to this author. e-mail: dauskardt@stanford.edu
Get access

Abstract

Hybrid organic–inorganic nanoporous thin-film glasses are extremely fragile and prone to stress-corrosion cracking in reactive environments. This has limited their integration as ultra low dielectric constant layers in high density integrated circuits. We demonstrate how crack growth is influenced by non-buffered aqueous solutions and show that with increasing pH, crack-growth rates are significantly accelerated. Interestingly, a crack growth regime limited by the transport of hydroxide ions to the crack tip was observed. Existing models commonly used to predict crack growth are shown to over estimate the experimental data by 6 orders of magnitude. We rationalize this behavior in terms of a significant difference in the crack tip solution chemistry as compared to that of the bulk and propose both chemical reaction and transport mechanisms to support this hypothesis.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nguyen, C.V., Carter, K.R., Hawker, C.J., Hedrick, J.L., Jaffe, R.L., Miller, R.D., Remenar, J.F., Rhee, H.W., Rice, P.M., Toney, M.F., Trollsas, M. and Yoon, D.Y.: Low-dielectric, nanoporous organosilicate films prepared via inorganic/organic polymer hybrid templates. Chem. Mater. 11, 3080 (1999).CrossRefGoogle Scholar
2.Guyer, E.P. and Dauskardt, R.H.: Fracture of nanoporous thin-film glasses. Nature Mater. 3(1), 53 (2004).CrossRefGoogle ScholarPubMed
3.Bhatnagar, A., Hoffman, M.J. and Dauskardt, R.H.: Fracture and subcritical crack-growth behavior of Y-Si-Al-O-N glasses and Si3N4 ceramics. J. Am. Ceram. Soc. 83, 585 (2000).CrossRefGoogle Scholar
4.Dill, S.J., Bennison, S.J. and Dauskardt, R.H.: Subcritical crack-growth behavior of borosilicate glass under cyclic loads: Evidence of a mechanical fatigue effect. J. Am. Ceram. Soc. 80, 773 (1997).CrossRefGoogle Scholar
5.Crichton, S.N., Tomozawa, M., Hayden, J.S., Suratwala, T.I. and Campbell, J.H.: Subcritical crack growth in a phosphate laser glass. J. Am. Ceram. Soc. 82, 3097 (1999).CrossRefGoogle Scholar
6.Wiederhorn, S.M.: Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 50, 407 (1967).CrossRefGoogle Scholar
7.Wiederhorn, S.M. and Bolz, L.H.: Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 53, 543 (1970).CrossRefGoogle Scholar
8.Wiederhorn, S.M., Johnson, H., Heuer, A.H. and Diness, A.M.: Fracture of glass in vacuum. Am. Ceram. Soc. Bull. 52, 345 (1973).Google Scholar
9.Wiederhorn, S.M., Haller, W.K., Bolz, L.H. and Blackburn, D.H.: A chemical interpretation of the stress-corrosion cracking of glass. Am. Ceram. Soc. Bull. 49, 432 (1970).Google Scholar
10.Wiederhorn, S.M. and Johnson, H.: Effect of pressure on static fatigue of glass. J. Am. Ceram. Soc. 54, 585 (1971).CrossRefGoogle Scholar
11.Michalske, T.A. and Bunker, B.C.: A chemical kinetics model for glass fracture. J. Am. Ceram. Soc. 76, 2613 (1993).CrossRefGoogle Scholar
12.Michalske, T.A. and Bunker, B.C.: Steric effects in stress corrosion fracture of glass. J. Am. Ceram. Soc. 70, 780 (1987).CrossRefGoogle Scholar
13.Michalske, T.A. and Bunker, B.C.: Slow fracture model based on strained silicate structures. J. Appl. Phys. 56, 2686 (1984).CrossRefGoogle Scholar
14.Michalske, T.A. and Freiman, S.W.: A molecular mechanism for stress corrosion in vitreous silica. J. Am. Ceram. Soc. 66, 284 (1983).CrossRefGoogle Scholar
15.Michalske, T.A. and Freiman, S.W.: A molecular interpretation of stress corrosion in silica. Nature 295, 511 (1982).CrossRefGoogle Scholar
16.Williams, J.G. and Marshall, G.P.: Environmental crack and craze growth phenomena in polymers. Proc. R. Soc. London Ser. A 342, 55 1975 .Google Scholar
17.Chan, M.K.V. and Williams, J.G.: Slow stable crack-growth in high-density polyethylenes. Polym. 24, 234 (1983).CrossRefGoogle Scholar
18.Lane, M.W., Snodgrass, J.M. and Dauskardt, R.H.: Environmental effects on interfacial adhesion. Microelectron. Reliab. 41, 1615 (2001).CrossRefGoogle Scholar
19.Kook, S.Y. and Dauskardt, R.H.: Moisture-assisted subcritical debonding of a polymer/metal interface. J. Appl. Phys. 91, 1293 (2002).CrossRefGoogle Scholar
20.Snodgrass, J.M., Pantelidis, D., Jenkins, M.L., Bravman, J.C. and Dauskardt, R.H.: Subcritical debonding of polymer/silica interfaces under monotonic and cyclic loading. Acta Mater. 50, 2395 (2002).CrossRefGoogle Scholar
21.Guyer, E.P. and Dauskardt, R.H.: Effect of aqueous solution chemistry on the accelerated cracking of lithographically patterned arrays of copper and nanoporous thin-films, in Materials Technology and Reliability for Advanced Interconnects and Low-k Dielectrics–2004, edited by Carter, R.J., Hau-Riege, C.S., Kloster, G.M., Lu, T-M., and Schulz, S.E. (Mater. Res. Soc. Symp. Proc., 812, Warrendale, PA, 2004).Google Scholar
22.Lane, M., Ware, R., Voss, S., Ma, Q., Fujimoto, H., and Dauskardt, R.H.: Progressive debonding of multilayer interconnect structures, in Materials Reliability in Microelectronics VII Symposium, edited by Clement, J.J., Keller, R.R., Krisch, K.S., Sanchez, J.E., Jr., and Z. Suo. (Mater. Res. Soc. Symp. Proc., 473, Warrendale, PA, 1997).Google Scholar
23.Cook, R. and Liniger, E.: Stress-corrosion cracking of low-dielectric constant spin-on-glass thin films. J. Electrochem. Soc. 146(12), 4439 (1999).CrossRefGoogle Scholar
24.Lin, Y., Vlassak, J., Tsui, T. and McKerrow, A.: Environmental effects on subcritical delamination of dielectric and metal films from organosilicate glass (OSG) thin films. (Mater. Res. Soc. Symp. Proc., Warrendale, PA, 2003).CrossRefGoogle Scholar
25.Wiederhorn, S.M. and Johnson, H.: Effect of electrolyte pH on crack propagation in glass. J. Am. Ceram. Soc. 56, 192 (1973).CrossRefGoogle Scholar
26.Dauskardt, R.H., Lane, M., Ma, Q. and Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141 (1998).CrossRefGoogle Scholar
27.Das, A., Le, Q.T., Furukawa, Y., Nguyen, V.H., Terzieva, V., de Theije, F., Whelan, C.M., Maenhoudt, M., Struyf, H., Tokei, Z., Iacopi, F., Stucchi, M., Carbonell, L., Vos, I., Bender, H., Patz, M., Beyer, G., Van Hove, M. and Maex, K.: Characterisation of JSR’s spin-on hardmask FF-02. Microelectron. Eng. 70, 308 (2003).CrossRefGoogle Scholar
28.Lane, M., Dauskardt, R.H., Vainchtein, A. and Gao, H.: Plasticity contributions to interface adhesion in thin-film interconnect structures. J. Mater. Res. 15, 2758 (2000).CrossRefGoogle Scholar
29.Hohlfelder, R.J., Maidenberg, D.A., Dauskardt, R.H., Wei, Y.G. and Hutchinson, J.W.: Adhesion of benzocyclobutene-passivated silicon in epoxy layered structures. J. Mater. Res. 16, 243 (2001).CrossRefGoogle Scholar
30.Wiederhorn, S.M.: A chemical interpretation of static fatigue. J. Am. Ceram. Soc. 55, 81 (1972).CrossRefGoogle Scholar
31.White, G.S., Freiman, S.W., Weiderhorn, S.M. and Coyle, T.D.: Effects of counterions on crack growth in vitreous silica. J. Am. Ceram. Soc. 70, 891 (1987).CrossRefGoogle Scholar
32.Budd, S.M.: The mechanisms of chemical reaction between silicate glass and attacking agents. Phys. Chem. Glasses 2, 111 (1961).Google Scholar
33.Vlassak, J.J., Lin, Y. and Tsui, T.Y.: Fracture of organosilicate glass thin films: Environmental effects. Mater. Sci. Eng. A 391(1–2), 159 (2004).CrossRefGoogle Scholar
34.Brady, P.V. and Walther, J.V.: Controls on silicate dissolution rates in neutral and basic pH solutions at 25C. Geochim. Cosmochim. Acta. 53, 2823 (1989).CrossRefGoogle Scholar
35.Iler, R.K.: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, New York, 1979), xxiv, p. 866.Google Scholar
36.Brady, P.V. and Walther, J.V.: Controls on silicate dissolution rates in neutral and basic pH solutions at 25-Degrees-C. Geochim. Cosmochim. Acta. 53, 2823 (1989).CrossRefGoogle Scholar
37.Atkins, P.W.: Physical Chemistry, 2nd ed. (W.H. Freeman and Co., lNew York, NY, 1982).Google Scholar
38.Pitzer, K.S.: Electrolyte theory—Improvements since Debye and Huckel. Acc. Chem. Res. 10, 371 (1977).CrossRefGoogle Scholar
39.Wiederhorn, S.M., Fuller, E.R.J. and Thomson, R.: Micromechanisms of crack growth in ceramics and glasses in corrosive environments. Metal Sci. 14, 450 (1980).CrossRefGoogle Scholar
40.Fogler, S.H.: Elements of Chemical Reaction Engineering (Prentice Hall, NJ, 1999).Google Scholar
41.Balej, J.: Activity coefficients of aqueous solutions of NaOH and KOH in wide concentration and temperature ranges. Collection of Czechoslovack Chem. Comm. 61, 1549 (1996).CrossRefGoogle Scholar
42.Rock, P.A.: Chemical Thermodynamics (University Science Books, Mill Valley, CA, 1983).Google Scholar
43.Lawn, B.R.: Interfacial forces and the fundamental nature of brittle cracks. Appl. Phys. Lett. 47, 809 (1985).CrossRefGoogle Scholar
44.Wiederhorn, S.M. and Fuller, E.R.: Effect of surface forces on subcritical crack-growth in glass. J. Am. Ceram. Soc. 72, 248 (1989).CrossRefGoogle Scholar
45.Chan, K.Y.: Electrolytes in nanostructures, in Nano-Surface Chemistry, edited by Rosoff, M. (Marcel Dekker, Inc., New York, NY, 2002).Google Scholar
46.Israelachvili, J.: Intermolecular & Surface Forces, 2nd ed. (Academic Press, London, England, 1992).Google Scholar
47.Chen, W-C. and Yen, C-T.: Effects of slurry formulations on chemical-mechanical polishing of low-dielectric constant polysiloxanes: hydrido-organo siloxane and methyl silsesquioxane. J. Vac. Sci. Technol. B 18, 201 (2000).CrossRefGoogle Scholar