Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T10:55:53.306Z Has data issue: false hasContentIssue false

Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers

Published online by Cambridge University Press:  31 January 2011

Ahmed H. Touny*
Affiliation:
Department of Mechanical, Industrial, and Manufacturing Engineering, University of Toledo, Toledo, Ohio 43606
Joseph G. Lawrence*
Affiliation:
Department of Mechanical, Industrial, and Manufacturing Engineering, and Department of Bioengineering, University of Toledo, Toledo, Ohio 43606
Andrew D. Jones
Affiliation:
Department of Mechanical, Industrial, and Manufacturing Engineering, University of Toledo, Toledo, Ohio 43606
Sarit B. Bhaduri
Affiliation:
Department of Mechanical, Industrial, and Manufacturing Engineering, and Department of Surgery, University of Toledo, Toledo, Ohio 43606
*
a)Current address: Chemistry Department, Helwan University, Ain Helwan, Helwan, Egypt.
b)Address all correspondence to this author. e-mail: joseph.lawrence@utoledo.edu
Get access

Abstract

Halloysite nanotubes (HNT) reinforced polylactic acid (PLA) nanocomposite fibers were produced using an electrospinning approach for biomedical applications. The PLA/HNT nanocomposite fibers were characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The various factors such as type of solvent, solution concentration, HNT loading and feed rate, affecting the electrospinning process, and the morphology of the nanofibers were investigated, and the optimum values for these parameters are suggested. The results indicated that the addition of dimethylformamide (DMF) to chloroform facilitated the electrospinning process because of the improvement in electrical conductivity and viscosity of the solution. Nanometer-sized fibers were obtained by the addition of HNT to PLA. HNT loadings had a significant effect on the morphology of the nanofibers. Bead-free fibers were produced at feed rates between 1 and 4 mL/h.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ray, S.S., Okamoto, M.Biodegradable polylactide and its nanocomposites: Opening a new dimension for plastics and composites. Macromol. Rapid Commun. 24, 815 (2003)CrossRefGoogle Scholar
2.Ray, S.S., Bousmina, M.Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog. Mater. Sci. 50, 962 (2005)Google Scholar
3.Auras, R., Harte, B., Selke, S.An overview of polylactides as packaging materials. Macromol. Biosci. 4, 835 (2004)CrossRefGoogle ScholarPubMed
4.Gupta, B., Revagade, N., Hilborn, J.Poly (lactic acid) fiber: An overview. Prog. Polym. Sci. 32, 455 (2007)CrossRefGoogle Scholar
5.Kyrikou, I., Briassoulis, D.Biodegradation of agricultural plastic films. A critical review. Rev. J. Polym. Environ. 15, 125 (2007)CrossRefGoogle Scholar
6.Kriegel, C., Arrechi, A., Kit, K., McClements, D.J., Weiss, J.Fabrication, functionalization, application of electrospun biopolymer nanofibers. Crit. Rev. Food Sci. Nutr. 48, 775 (2008)CrossRefGoogle ScholarPubMed
7.Steinbuchel, A., Marchessault, R.H.Biopolymers for Medical and Pharmaceutical Applications Vol. 1, 1st ed. (Wiley-VCH Verlag, Germany 2005)183Google Scholar
8.Athanasiou, K.A., Agrawal, C.M., Barber, F.A., Burkhart, S.S.Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14, 726 (1998)CrossRefGoogle ScholarPubMed
9.Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., Delvaux, B.Halloysite clay minerals—A review. Clay Miner. 40, 383 (2005)CrossRefGoogle Scholar
10.Antill, S.Halloysite: A low-cost alternative. Aust. J. Chem. 56, 723 (2003)CrossRefGoogle Scholar
11.Du, M.L., Guo, B.H., Liu, M.X., Jia, D.M.Thermal decomposition and oxidation ageing behavior of polypropylene/halloysite nanotube nanocomposites. Polym. Polym. Compos. 15, 321 (2007)Google Scholar
12.Ye, Y.P., Chen, H.B., Wu, J.S., Ye, L.High impact strength epoxy nanocomposites with natural nanotubes. Polymer (Guildf.). 48, 6426 (2007)CrossRefGoogle Scholar
13.Ismail, H., Pasbakhsh, P., Fauzi, M.N., Ahmad, A.Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym. Test. 27, 841 (2008)CrossRefGoogle Scholar
14.Du, M.L., Guo, B.C., Jia, D.M.Thermal stability and flame retardant effects of halloysite nanotubes on poly propylene. Eur. Polym. J. 42, 1362 (2006)CrossRefGoogle Scholar
15.Nalinkanth, G.V., Dmitriy, M., Vladimir, T., Ronald, R.P., Yuri, M.L.Organized shells on clay nanotubes for controlled release of macromolecules. Macromol. Rapid Commun. 30, 99 (2009)Google Scholar
16.Levis, S.R., Deasy, P.B.Characterization of halloysite for use as a microtubular drug delivery system. Int. J. Pharm. 243, 125 (2002)CrossRefGoogle ScholarPubMed
17.Shchukin, D.G., Sukhorukov, G.B., Price, R.R., Lvov, Y.M.Halloysite nanotubes as biomimetic nanoreactors. Small 1, 510 (2005)CrossRefGoogle ScholarPubMed
18.Shamsi, M.H., Geckeler, K.E.The first biopolymer-wrapped non-carbon nanotubes. Nanotechnology 19, 075604 (2008)CrossRefGoogle ScholarPubMed
19.Xie, J., Li, X., Xia, Y.Putting electrospun nanofibers to work for biomedical research. Macromol. Rapid Commun. 29, 1775 (2008)CrossRefGoogle ScholarPubMed
20.Schiffman, J.D., Schauer, C.L.A review: Electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 48, 317 (2008)CrossRefGoogle Scholar
21.Sill, T.J., von Recum, H.A.Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29, 1989 (2008)CrossRefGoogle ScholarPubMed
22.Fong, H., Liu, W., Wang, C., Vaia, R.A.Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite. Polymer (Guildf.) 43, 775 (2002)CrossRefGoogle Scholar
23.Li, L., Bellan, L.M., Craighead, H.G., Frey, M.W.Formation and properties of nylon-6 and nylon-6/montmorillonite composite nanofibers. Polymer (Guildf.) 47, 6208 (2006)CrossRefGoogle Scholar
24.Cai, Y., Li, Q., Wei, Q., Wu, Y., Lei, S., Hu, Y.Structures, thermal stability, and crystalline properties of polyamide 6/organic-modified Fe-montmorillonite composite nanofibers by electrospinning. J. Mater. Sci. 43, 6132 (2008)CrossRefGoogle Scholar
25.Li, Q., Wei, Q., Wu, N., Cai, Y., Gao, W.Structural characterization and dynamic water adsorption of electrospun polyamide 6/montmorillonite nanofibers. J. Appl. Polym. Sci. 107, 3535 (2008)CrossRefGoogle Scholar
26.Wang, M., Hsieh, A.J., Rutledge, G.C.Electrospinning of poly (MMA-co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties. Polymer (Guildf.) 46, 3407 (2005)CrossRefGoogle Scholar
27.Lee, H.W., Karim, M.R., Ji, H.M., Choi, J.H., Ghim, H.D., Park, S.M., Oh, W., Yeum, J.H.Electrospinning fabrication and characterization of poly (vinyl alcohol)/montmorillonite nanofiber mats. J. Appl. Polym. Sci. 113, 1860 (2009)CrossRefGoogle Scholar
28.Ji, H.M., Lee, H.W., Karim, M.R., Cheong, I.W., Bae, E.A., Kim, T.H., Islam, M.I., Ji, B.C., Yeum, J.Y.Electrospinning and characterization of medium molecular weight poly(vinyl alcohol)/high molecular weight poly(vinyl alcohol) /montmorillonite nanofibers. Colloid Polym. Sci. 287, 751 (2009)CrossRefGoogle Scholar
29.Hong, J.H., Jeong, E.H., Lee, H.S., Baik, D.H., See, S.W., Youk, J.H.Electrospinning of polyurethane/ organically modified montmorillonite nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 43, 3171 (2005)CrossRefGoogle Scholar
30.Lee, Y.H., Lee, J.H., An, I., Kim, C., Lee, D.S., Lee, Y.K., Nam, J.Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 26, 3165 (2005)CrossRefGoogle ScholarPubMed
31.Marras, S.I., Kladi, K.P., Tsivintzelis, I., Zuburtikudis, I., Panayiotou, C.Biodegradable polymer nanocomposites: The role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater. 4, 756 (2008)CrossRefGoogle ScholarPubMed
32.Marras, S.I., Zuburtikudis, I., Panayiotou, C.Nanostructure vs. microstructure: Morphological and thermo-mechanical characterization of poly (l-lactic acid)/layered silicate hybrids. Eur. Polym. J. 43, 2191 (2007)CrossRefGoogle Scholar
33.Zhou, H.J., Kim, K.W., Giannelis, E., Joo, Y.L. Nanofibers from poly (L-lactic) acid nanocomposites: Effect of nanoclays on molecular structures Polymeric Nanofibers Book Series ACS Symposium Series Vol. 918 (American Chemical Society, Washington, DC 2006)217CrossRefGoogle Scholar
34.Pilla, S., Gong, S., O'Neill, E., Yang, L., Rowell, R.M.Polylactide-recycled wood fiber composites. J. Appl. Polym. Sci. 111, 37 (2009)CrossRefGoogle Scholar
35.McCullen, S.D., Stano, K.L., Stevens, D.R., Roberts, W.A., Monteiro-Riviere, N.A., Clarke, L.I., Gorga, R.E.Development, optimization, and characterization of electrospun poly (lactic acid) nanofibers containing multi-walled carbon nanotubes. J. Appl. Polym. Sci. 105, 1668 (2007)CrossRefGoogle Scholar
36.Ramakrishina, S., Fujihara, K., Teo, W., Lim, T., Ma, Z.An Introduction to Electrospinning and NanoFibers 1st ed. (World Scientific, Singapore 2005)98102CrossRefGoogle Scholar
37.Mazinani, S., Ajji, A., Dubois, C.Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat. Polymer (Guildf.) 50, 3329 (2009)CrossRefGoogle Scholar