Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T12:52:52.106Z Has data issue: false hasContentIssue false

Dynamic modeling of the interaction of gas and solid phases in multistep reactive micropyretic synthesis

Published online by Cambridge University Press:  03 March 2011

V. Subramanian
Affiliation:
Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012
M.G. Lakshmikantha
Affiliation:
Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012
J.A. Sekhar
Affiliation:
Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, Cincinnati, Ohio 45221-0012
Get access

Abstract

A mathematical model of micropyretic synthesis, including the consideration of pressure rise (due to gas evolution) in a porous compact, is developed for a multistep reaction. D'Arcy's law of gas flow, continuity equation, and gas law are combined to obtain a relationship between the pressure and temperature of gas. This equation for the gas pressure is solved along with the energy equations of gas and solid phase. The numerical analysis shows that the magnitude of pressure increase depends on the initial gas pressure, temperature, and permeability. When gas evolution is considered, the pressure increase depends on the variables that determine the kinetics of the gas evolution reaction, such as the activation energy and the pre-exponential factor. The pressure increase is maximum when the gas evolution takes place in the combustion reaction zone. The gas evolution is noted not to influence the combustion wave propagation.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Li, H. P. and Sekhar, J. A., Advanced Synthesis of Engineered Structural Materials, edited by Moore, J. J., Lavernia, E. J., and Froes, F. H. (ASM INTERNATIONAL, Materials Park, OH, 1993), p. 25.Google Scholar
2Munir, Z. A., Am. Ceram. Soc. Bull. 67, 342 (1988).Google Scholar
3Yi, H. C. and Moore, J. J., J. Mater. Sci. 25, 1159 (1990).CrossRefGoogle Scholar
4Lakshmikantha, M. G. and Sekhar, J. A., Metall. Trans. 24A, 617 (1993).CrossRefGoogle Scholar
5Lakshmikantha, M. G., Bhattacharya, A., and Sekhar, J. A., Metall. Trans. 23A, 23 (1992).CrossRefGoogle Scholar
6Lakshmikantha, M. G., Ho, C. T., and Sekhar, J.A., Processing and Fabrication of Advanced Materials for High Temperature Applications, edited by Ravi, V. A. and Srivatsan, T. S. (TMS, Warrendale, PA, 1992), p. 23.Google Scholar
7Lakshmikantha, M. G. and Sekhar, J. A., J. Mater. Sci. 28, 6403 (1993).CrossRefGoogle Scholar
8Lakshmikantha, M. G. and Sekhar, J. A., J. Am. Ceram. Soc. 77, 202 (1994).CrossRefGoogle Scholar
9Merzhanov, A. G. and Khaikin, B. I., Prog. Energy Combust. Sci. 14, 1 (1988).CrossRefGoogle Scholar
10Subramanian, V., Lakshmikantha, M. G., and Sekhar, J.A., unpublished.Google Scholar
11Shkiro, V. M., Nersisyan, G. A., and Borovinskaya, I. P., Combust. Explos. Shock Waves 14, 455 (1978).CrossRefGoogle Scholar
12Li, H. P. and Sekhar, J. A., Mater. Sci. Eng. A160, 221 (1993).CrossRefGoogle Scholar
13Vershinikov, V. I. and Filonenko, A. K., Combust. Explos. Shock Waves 14, 588 (1978).CrossRefGoogle Scholar
14Aldushin, A. P., Seplyarsky, B. S., and Shkadinsky, K. G., Combust. Explos. Shock Waves 16, 33 (1980).CrossRefGoogle Scholar
15Dandekar, H. W., Puszynski, J., and Hlavacek, V., AIChE J. 36, 1649 (1990).CrossRefGoogle Scholar
16Shkadinsky, K. G., Strunina, A. G., Firsov, A. N., Demidova, L. K., and Kostin, S. V., Combust. Explos. Shock Waves 27, 591 (1991).CrossRefGoogle Scholar
17Shkadinsky, K. G., Shadinskaya, G. V., Matkowsky, B. J., and Volpert, V. A., J. Mater. Synthesis and Processing 1, 245 (1993).Google Scholar
18Shkadinsky, K. G., Shadinskaya, G. V., Matkowsky, B. J., and Volpert, V. A., Combust. Sci. Technol. 88, 271 (1992).CrossRefGoogle Scholar
19Subramanian, V. and Sekhar, J. A., unpublished results, University of Cincinnati, 1993.Google Scholar
20Bhattacharya, D. and Pei, D. C., Chem. Engg. Sci. 30, 293 (1975).CrossRefGoogle Scholar
21Baumeister, E. B. and Bennett, CO., AIChE J. 4, 69 (1958).CrossRefGoogle Scholar
22Baker, J. J., Ind. Eng. Chem. 57, 43 (1965).CrossRefGoogle Scholar
23Lancashire, R. B., Lezberg, E. A., and Morris, J. F., Ind. Eng. Chem. 52, 433 (1960).CrossRefGoogle Scholar
24Barin, I., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances (Springer-Verlag, New York, 1973), p. 489.Google Scholar
25Brandes, E. A. and Brook, G. B., Smithells Metals Reference Book (Butterworth-Heinemann Ltd., Washington, DC, 1992).Google Scholar
26Subrahmanyam, J., J. Am. Ceram. Soc. 76, 226 (1993).Google Scholar
27Holt, J. B., Kingman, D. D., and Bianchini, G. M., Mater. Sci. Eng. 71, 321 (1985).CrossRefGoogle Scholar
28Dunmead, S. D., Readey, D. W., and Semler, C. E., J. Am. Ceram. Soc. 72, 2318 (1989).CrossRefGoogle Scholar
29Azatyan, T. S., Mal'tsev, V.M., Merzhanov, A. G., and Seleznev, V. A., Comb. Explos. Shock Waves 15, 35 (1979).CrossRefGoogle Scholar
30Li, H. P., Doctoral Dissertation, University of Cincinnati (1994).Google Scholar