Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T23:40:24.178Z Has data issue: false hasContentIssue false

Downshift of Raman peak in diamond powders

Published online by Cambridge University Press:  31 January 2011

Xing-Zhong Zhao
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
K. A. Cherian
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Rustum Roy
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
William B. White
Affiliation:
Intercollege Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Extract

Results are presented on the influence of the size of diamond powders and the laser power on the main Raman line. These results show conclusively that there is a consistent and systematic, reversible, downshift with both decrease of powder size, and increase of power. The shift can be explained by local heating of about 500 °C in the extreme case. Its significance applies to interpretation of the alleged “downshifting” of the 1332 cm−1 line in all diamond research. In the future, the grain size, the thermal contact, and the beam power must be carefully monitored in reporting and interpreting any frequency shifts.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.DeVries, R. C., Annu. Rev. Mater. Sci. 17, 161 (1987);CrossRefGoogle Scholar
Badzian, A. R. and DeVries, R. C., Mater. Res. Bull. 23, 385 (1988); 23, 531 (1988).CrossRefGoogle Scholar
2.Chrenko, R. M., J. Appl. Phys. 63, 5873 (1988).CrossRefGoogle Scholar
3.Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
4.Buckley, R. G., Moustakas, T. D., Ye, Ling, and Varon, J., J. Appl. Phys. 66, 3595 (1989).CrossRefGoogle Scholar
5.Herchen, H. and Cappelli, M. A., Phys. Rev. B 43, 11 740 (1991);CrossRefGoogle Scholar
Herchen, H., Cappelli, M. A., Landstrass, M. I., Plano, M. A., and Moyer, M. D., Thin Solid Films 212, 206 (1992).CrossRefGoogle Scholar
6.Zouboulis, E. S. and Grimsditch, M., Phys. Rev. B 43, 12 490 (1991).CrossRefGoogle Scholar
7.Andreyev, V. D., Nachalnaya, T. A., and Gabrusenok, E. V., Sverkhtverdye Materialy 15, 11 (1993).Google Scholar
8.Zhao, X-Z., Cherian, A., Badzian, A., and Roy, R., presented at the annual meeting of America Ceramics Society, April 15–17, 1996, Indianapolis, Indiana, USA.Google Scholar
9.Zhao, X-Z., Cherian, K. A., Roy, R., and White, W. B., ibid.Google Scholar
10.Zhao, X-Z., Roy, R., Cherian, K. A., and Badzian, A., Nature (London) 385, 315 (1997).Google Scholar
11.Roy, R., Ravichandran, D., Ravindranathan, P., and Badzian, A., J. Mater. Res. 11, 1164 (1996);CrossRefGoogle Scholar
Roy, R., Ravichandran, D., Badzian, A., and Breval, E., Diamond and Related Mater. 5, 973 (1996);CrossRefGoogle Scholar
Ravichandran, D. and Roy, R., Mater. Res. Bull. 31, 1075 (1996).CrossRefGoogle Scholar
12.Gilson, T. and Hendra, P., Laser Raman Spectroscopy (Wiley-Interscience, New York, 1970).Google Scholar