Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T23:15:09.797Z Has data issue: false hasContentIssue false

Direct observations of heteroepitaxial diamond on a silicon(110) substrate by microwave plasma chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

C. J. Chen
Affiliation:
Materials Science Center, Tsin Hua University, Hsinchu, Taiwan 300, Republic of China
L. Chang
Affiliation:
Division of Engineering and Applied Science, National Science Council, Taipei, Taiwan 10636, Republic of China
T. S. Lin
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 31015, Republic of China
F. R. Chen
Affiliation:
Materials Science Center, Tsin Hua University, Hsinchu, Taiwan 300, Republic of China
Get access

Abstract

Heteroepitaxial diamond has been successfully deposited on a Si(110) substrate by the microwave plasma chemical vapor deposition method. The pretreatment consisted of carburization and bias-enhanced nucleation steps. Cross-sectional transmission electron microscopy reveals that diamond can be in the cube-on-cube epitaxial relationship with the Si substrate. Various orientation relationships between diamond and Si substrates have also been observed, depending on the location where the plasma applied. Near the center of the plasma, twins were rarely observed in cube-on-cube epitaxial regions. Away from the center of the plasma ball, Σ3 twins are seen first, and then additional Σ9 and Σ27 twins occur near the edge of the plasma. In general, defect density in the epitaxial films is less than that observed in polycrystalline ones. No interlayer could be observed between diamond and silicon. In addition, 2H-type hexagonal diamond has also been found, and is in epitaxy with the Si substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inuzuka, T., Koizumi, S., and Suzuki, K., Diamond Relat. Mater. 1, 175 (1992).CrossRefGoogle Scholar
2.Maeda, H., Masuda, S., Kusakabe, K., and Morooka, S., Diamond Relat. Mater. 3, 398 (1994).CrossRefGoogle Scholar
3.Stoner, B. R. and Glass, J.T., Appl. Phys. Lett. 60, 698 (1992).CrossRefGoogle Scholar
4.Wolter, S. D., Stoner, B. R., Glass, J.T., Ellis, P. J., Buhaenko, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett. 62, 12151217 (1993).CrossRefGoogle Scholar
5.Wang, L., Pirouz, P., Argoitia, A., Ma, J.S., and Angus, J. C., Appl. Phys. Lett. 63, 1336 (1993).CrossRefGoogle Scholar
6.Wang, P. C., Glass, J. T., and Zhu, W., J. Mater. Res. 8, 1773 (1993).Google Scholar
7.Sato, Y., Fujita, H., Ando, T., Tanaka, T., and Kamo, M., Philos. Trans. R. Soc. London A 342, 225 (1993).Google Scholar
8.Prins, J. F. and Gaigher, H. L., in New Diamond Science and Technology, edited by Messier, R., Glass, J.T., Butler, J.E., and Roy, R. (Mater. Res. Soc. Symp. Proc. NDST-2, Pittsburgh, PA, 1991), p. 561.Google Scholar
9.Jeng, D. G. and Tuan, H. S., Appl. Phys. Lett. 56, 1968 (1990).CrossRefGoogle Scholar
10.Chang, L., Lin, T. S., Chen, J. L., and Chen, F. R., Appl. Phys. Lett. 62, 3444 (1993).CrossRefGoogle Scholar
11.Stoner, B. R., Kao, C. T., Malta, D. M., and Glass, R. C., Appl. Phys. Lett. 62, 2347 (1993).CrossRefGoogle Scholar
12.Stoner, B. R., Sahaida, S. R., Bade, J. P., Southworth, P., and Ellis, P. J., J. Mater. Res. 8, 1334 (1993).CrossRefGoogle Scholar
13.Jiang, X., Klages, C. P., Zachai, R., Hartweg, M., and Fusser, H. J., Appl. Phys. Lett. 62, 3438 (1993).CrossRefGoogle Scholar
14.Jiang, X., Schiffmann, K., Westpahl, A., and Klages, C. P., Appl. Phys. Lett. 63, 1203 (1993).CrossRefGoogle Scholar
15.Kohl, R., Wild, C., Herres, N., Koidl, P., Stoner, B. R., and Glass, J. T., Appl. Phys. Lett. 63, 1792 (1993).CrossRefGoogle Scholar
16.Fox, B. A., Stoner, B. R., Malta, D. M., Ellis, P. J., Glass, R. C., and Sivazlian, F. R., Diamond Relat. Mater. 3, 382 (1994).CrossRefGoogle Scholar
17.Schreck, M., Hessmer, R., Geier, S., Rauschenbach, B., and Stritzker, B., Diamond Relat. Mater. 3, 510 (1994).CrossRefGoogle Scholar
18.Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
19.Stoner, B. R., Ma, G-H. M., Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
20.Ownby, P. D., Yang, X., and Liu, L., J. Am. Ceram. Soc. 75, 1876 (1992).CrossRefGoogle Scholar
21.Pirouz, P., Chaim, R., Dahmen, U., and Westmacott, K. H., Acta Metall. Mater. 38, 313 (1990).CrossRefGoogle Scholar
22.Cerva, H., J. Mater. Res. 6, 2324 (1991).CrossRefGoogle Scholar
23.Frenklach, M., Kematick, R., Huang, D., Howard, W., Spear, K. E., Phelps, A. W., and Koba, R., J. Appl. Phys. 66, 395 (1989).CrossRefGoogle Scholar
24.Howard, W., Huang, D., Yuan, J., Frenklach, M., Spear, K. E., Koba, R., and Phelps, A. W., J. Appl. Phys. 68, 1247 (1990).CrossRefGoogle Scholar
25.Nutt, S. R., Smith, D. J., Kim, H. J., and Davis, R. F., Appl. Phys. Lett. 50, 203 (1987).CrossRefGoogle Scholar
26.Chen, C. J., Chang, L., Chen, F. R., and Lin, T. S., unpublished research.Google Scholar
27.Ernst, F. and Pirouz, P., J. Mater. Res. 4, 834 (1989).CrossRefGoogle Scholar
28.Tomikawa, T. and Shikata, S., Jpn. J. Appl. Phys. A 32, 3938 (1993).CrossRefGoogle Scholar
29.Wild, C., Koidl, P., Müller-Sebert, W., Walcher, H., Kohl, R., Herres, N., Locher, R., Samlenski, R., and Brenn, R., Diamond Relat. Mater. 2, 158 (1993).CrossRefGoogle Scholar
30.Tzou, Y., unpublished.Google Scholar
31.Tzou, Y., Bruely, J., Ernst, F., Rühle, M., and Raj, R., J. Mater. Res. 9, 1566 (1994).CrossRefGoogle Scholar