Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T23:47:44.421Z Has data issue: false hasContentIssue false

Diffusion of water in crystalline and glassy oxides: Diffusion–reaction model

Published online by Cambridge University Press:  31 January 2011

R. H. Doremus
Affiliation:
Materials Science and Engineering Department, Rensselaer Polytechnic Institute, Troy, New York 12180–3590
Get access

Abstract

Diffusion of water in oxides is modeled as resulting from the solution and diffusion of molecular water in the oxide. This dissolved water can react and exchange with the oxide network to form immobile OH groups and different hydrogen and oxygen isotopes in the oxide. The model agrees with many experiments on water diffusion in oxides. The activation energy for diffusion of water in oxides correlates with the structural openness of the oxide, suggesting that molecular water is the diffusing species.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zhang, Y., Jenkins, J., and Xu, Z., Geochim. Cosmochim. Acta 61, 2167 (1997).CrossRefGoogle Scholar
2.Doremus, R.H., Reactivity of Solids, edited by Mitchell, J.W. and De, R.C.Vries (Wiley, New York, 1969), p. 667.Google Scholar
3.Doremus, R.H., J. Mater. Res. 10, 2379 (1995).CrossRefGoogle Scholar
4.Doremus, R.H., Earth Plan. Sci. Lett. 163, 43 (1998).Google Scholar
5.Moulson, A.J. and Roberts, J.P., Trans. Far. Soc. 57, 1208 (1961).CrossRefGoogle Scholar
6.Crank, J., Mathematics of Diffusion, 2nd ed. (Oxford Press, 1975).Google Scholar
7.Delaney, J.R. and Karsten, J.L., Earth Plan. Sci. Letts. 52, 191 (1981).CrossRefGoogle Scholar
8.Lapham, K.E., Holloway, J.R., and Delaney, J.R., J. Noncryst. Solids 67, 179 (1984).Google Scholar
9.Burn, I. and Roberts, J.P., Phys. Chem. Glasses 11, 106114 (1970).Google Scholar
10.Kats, A., Philips Res. Lab. Reports 17, 133195, 201–279 (1962).Google Scholar
11.Giletti, B.J. and Yund, R.A., J. Geophys. Res. 89B, 4039 (1984).Google Scholar
12.Dennis, P.F., J. Geophys. Res. 89B, 4047 (1984).Google Scholar
13.Farver, J.R. and Yund, R.A., Chem. Geol. 90, 55 (1991).Google Scholar
14.Roberts, G.J. and Roberts, J.P., Phys. Chem. Glasses 7, 82 (1966).Google Scholar
15.Wakabayashi, H. and Tomozawa, M., J. Am. Ceram. Soc. 12, 1850 (1989).Google Scholar
16.Helmich, M. and Rauch, F., Glastech. Ber. 66, 195 (1993).Google Scholar
17.Zhang, Y., Stolper, E.M., and Wasserburg, G.J., Geochim. Cosmochim. Acta 55, 441 (1991).Google Scholar
18.Silver, L.A., Ilhinger, P.D., and Stolper, E.M., Cont. Min. Pet. 104, 142 (1990).Google Scholar
19.Farver, J.R., Earth Plan. Sci. Letts. 121, 575 (1994).Google Scholar
20.Yund, R.A. and Anderson, T.F., Geochim. Cosmochim. Acta 42, 235 (1978).CrossRefGoogle Scholar
21.Farver, J.R. and Giletti, B.J., Geochim. Cosmochim. Acta 49, 1403 (1985).Google Scholar
22.Farver, J.F. and Giletti, B.J., Geochim. Cosmochim. Acta 53, 1621 (1989).Google Scholar
23.Giletti, B.J. and Hess, K.C., Earth Plan. Sci. Letts. 89, 115 (1988).Google Scholar
24.Fortier, S.M. and Giletti, B.J., Science 245, 1481 (1989).CrossRefGoogle Scholar
25.Scholze, H. and Mulfinger, H.O., Glastechn. Ber. 32, 381 (1959).Google Scholar
26.Giletti, B.J., Semet, M.P., and Yund, R.A., Geochim. Cosmochim. Acta 42, 45 (1978).CrossRefGoogle Scholar
27.Fortier, S.M. and Giletti, B.J., Geochim. Cosmochim. Acta 55, 1319 (1991).CrossRefGoogle Scholar
28.Farver, J.F., Earth Plan. Sci. Letts. 92, 386 (1989).Google Scholar
29.Watson, E.B. and Cherniak, D.J., Earth Plan. Sci. Letts. 148, 527 (1997).CrossRefGoogle Scholar
30.Moore, D.K., Cherniak, D.J., and Watson, E.B., Amer. Min. 83, 700 (1998).Google Scholar
31.Shannon, R.D., Acta Cryst. A32, 751 (1976).Google Scholar