Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:50:03.258Z Has data issue: false hasContentIssue false

Contrast Mechanism Maps for Piezoresponse Force Microscopy

Published online by Cambridge University Press:  31 January 2011

Sergei V. Kalinin
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia,Pennsylvania 19104
Dawn A. Bonnell
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia,Pennsylvania 19104
Get access

Extract

Piezoresponse force microscopy (PFM) is one of the most established techniques for the observation and local modification of ferroelectric domain structures on the submicron level. Both electrostatic and electromechanical interactions contribute at the tip-surface junction in a complex manner, which has resulted in multiple controversies in the interpretation of PFM. Here we analyze the influence of experimental conditions such as tip radius of curvature, indentation force, and cantilever stiffness on PFM image contrast. These results are used to construct contrast mechanism maps, which correlate the imaging conditions with the dominant contrast mechanisms. Conditions under which materials properties can be determined quantitatively are elucidated.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kolosov, O., Gruverman, A., Hatano, J., Takahashi, K., and Tokumoto, H., Phys. Rev. Lett. 74, 4309 (1995).Google Scholar
2.Takata, K., Kushida, K., Torii, K., and Miki, H., Jpn. J. Appl. Phys. 33, 3193 (1994).Google Scholar
3.Ganpule, C.S., Nagarjan, V., Li, H., Ogale, A.S., Steinhauer, D.E., Aggarwal, S., Williams, E., Ramesh, R., and Wolf, P. De, Appl. Phys. Lett. 77, 292 (2000).CrossRefGoogle Scholar
4.Gruverman, A. and Ikeda, Y., Jpn. J. Appl. Phys. 37, L939 (1998).CrossRefGoogle Scholar
5.Hong, S., Colla, E.L., Kim, E., No, K., Taylor, D.V., Tagantsev, A.K., Muralt, P., and Setter, N., J. Appl. Phys. 86, 607 (1999).Google Scholar
6.Christman, J.A., Kim, S.H., Maiwa, H., Maria, J.P., Rodriguez, B.J., Kingon, A.I., and Nemanich, R.J., J. Appl. Phys. 87, 8031 (2000).CrossRefGoogle Scholar
7.Kalinin, S.V. and Bonnell, D.A., J. Appl. Phys. 87, 3950 (2000).CrossRefGoogle Scholar
8.Luo, E.Z., Xie, Z., Xu, J.B., Wilson, I.H., and Zhao, L.H., Phys. Rev. B 61, 203 (2000).CrossRefGoogle Scholar
9.Likodimos, V., Labardi, M., and Allegrini, M., Phys. Rev. B 61, 14440 (2000).CrossRefGoogle Scholar
10.J. Munoz-Saldana, Schneider, G.A., and Eng, L.M., Surf. Sci. 480, L402 (2001).Google Scholar
11.Gruverman, A., Auciello, O., and Tokumoto, H., Annu. Rev. Mater. Sci. 28, 101 (1998).Google Scholar
12.Hong, J.W., Noh, K.H., Park, S.I., Kwun, S.I., and Kim, Z.G., Rev. Sci. Instrum. 70, 1735 (1999).CrossRefGoogle Scholar
13.Eng, L.M., Guntherodt, H-J., Schneider, G.A., Kopke, U., and J. Munoz Saldana, Appl. Phys. Lett. 74, 233 (1999).Google Scholar
14.Kalinin, S.V. and Bonnell, D.A. (unpublished).Google Scholar
15.Hong, S., Woo, J., Shin, H., Jeon, J.U., Pak, Y.E., Colla, E.L., Setter, N., Kim, E., and No, K., J. Appl. Phys. 89, 1377 (2001).CrossRefGoogle Scholar
16.Kalinin, S.V. and Bonnell, D.A., Phys. Rev. B Phys. Rev. B 65, 12408 (2002).Google Scholar
17.Giannakopoulos, A.E. and Suresh, S., Acta Mater. 47, 2153 (1999).Google Scholar
18.Karapetian, E., Sevostianov, I., and Kachanov, M., Philos. Mag. B 80, 331 (2000).CrossRefGoogle Scholar
19.Landolt-Bornstein New Series, edited by Hellwege, K-H. and Hellwege, A.M., (Springer-Verlag, New York, 1981), Vol. 16a.Google Scholar
20.Berlincourt, D., in Ultrasonic Transducer Materials, edited by Mattiat, O.E. (Plenum Press, New York, 1971).Google Scholar