Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T01:39:13.270Z Has data issue: false hasContentIssue false

Computer aided adhesive and assembly optimization method: Biomimetic optimization of adhesive joints

Published online by Cambridge University Press:  01 August 2006

M. Munzinger*
Affiliation:
Forschungszentrum Karlsruhe GmbH, Institut für Materialforschung II, Baden Würthemberg 76247, Germany
O. Kraft
Affiliation:
Forschungszentrum Karlsruhe GmbH, Institut für Materialforschung II, Baden Würthemberg 76247, Germany
C. Mattheck
Affiliation:
Forschungszentrum Karlsruhe GmbH, Institut für Materialforschung II, Baden Würthemberg 76247, Germany
*
a) Address all correspondence to this author. e-mail: matthias.munzinger@imf.fzk.de
Get access

Abstract

Over millions of years, natural constructions have been developed by evolutionary processes in nature with the general aim to generate high-performance structures with minimum material consumption. It is well known that one of the major strategies is to reach a largely homogeneous material load in the biological structure. In this paper, we demonstrate that this natural design principal applies not only to the macroscopic level but also to microstructural optimization, and in particular, to adhesive joints in nature. Furthermore, we introduce the computer aided adhesive and assembly optimization method (CA3O), which transfers the natural mechanically stimulated growth processes to technical adhesive joints by means of the finite element method.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kollmann, F.: Technology of Wood and Wood Materials Vol. 1, 2nd ed. (Springer Verlag, Heidelberg, Germany, 1982), in German.Google Scholar
2.Mattheck, C., Weber, K., Götz, K. How the red beech accomplishes radial tenisle loading. Allgemeine Forst Jagdzeitung 171 Vol. 1 (2000), pp. 1014, in German.Google Scholar
3.Mattheck, C.: The Face of Failure in Nature and Engineering (Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germany, 2004).Google Scholar
4.Mattheck, C.: Engineering Components Grow Like Trees (Kernforschungszentrum Karlsruhe, Karlsruhe, Germany, 1989), Vol. KfK 4648.Google Scholar
5.Folgado, J., Fernandes, P., and Rodriques, H.: Topology optimization of three-dimensional structures under contact conditions, in Proceedings WCSMO-4 Structural and Multidisciplinary Optimization (International Society for Structural and Multidisciplinary Optimization, Dalian, China, 2001), pp. 4243.Google Scholar
6.Ledermann, M., Tesari, I., Mattheck, C. CAO-shape optimization of a fillet with a complex, time dependent loading, in Computer Aided Optimum Design of Structures VII edited by Ibarra-Berastegi, G., Brebbia, C.A., and Zannetti, P.. (WIT Press, Ashurst, Southampton, England, 2001), pp. 203210 .Google Scholar
7.Mattheck, C., Tesari, I. Uniform stress—A design rule for biological load carriers, in Optimisation Mechanics in Nature edited by Collins, M.W., Hunt, D.G., and Atherton, M.A.. (WIT Press, Ashurst, Southampton, England, 2004), pp. 1534 .Google Scholar
8.Curry, J.: Bones—Structure and Mechanics Vol. I, 1st ed. (Princeton University Press, Princeton, NJ, 2002).CrossRefGoogle Scholar
9.Wolff, J.: The Law of the Bone Remodeling (Reprint 1986, Springer Verlag, Heidelberg, Germany, 1986).CrossRefGoogle Scholar
10.Mattheck, C.: Design in Nature (Springer Verlag, Heidelberg, Germany, 1998).CrossRefGoogle Scholar
11.Brand, R.A., Albright, J.A.: The Scientific Basis of Orthopaedics 1st ed. (Appleton & Lange, East Norwalk, NY, 1987).Google Scholar
12.Collins, J.Failure of Materials on Mechanical Design. (Wiley-Interscience Publication, New York, 1981).Google Scholar
13.Szabó, I.: Advanced Engineering Mechanics 6th ed. (Springer Verlag, Heidelberg, Germany, 2001), in German.Google Scholar
14.Schlimmer, M.: Influence of the hydrostatic stress state to the stiffness of adhesive joints. Schweißen Schneiden 38(8), 380 (1980) in German.Google Scholar
15.Engasser, I., Puck, A.: Research on fracture behavior of adhesive joints. Kunststoffe 70(8), 493 (1980) in German.Google Scholar
16.Schlimmer, M.: Hypothesis of strength for polymer materials. Rheol. Acta 20, 542 (1981) in German.CrossRefGoogle Scholar
17.Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis or limit design. Quart. Appl. Math. X(2), 157 (1952).CrossRefGoogle Scholar
18.Hahn, O., Kürlemann, J.Evaluation of Model Parameters for the Description and Assessment of the Mechanic Behavior of Adhesively Bonded Plastic Joints. 1st ed. (Shaker Verlag, Aachen, German, 1998), in German.Google Scholar
19.Jarsch, F.: Evaluation of material specific parameters of adhesively bonded metal joints. Bachelor Thesis, Forschungszentrum Karlsruhe GmbH (2005).Google Scholar
20.Habenicht, G.: Kleben, 4th ed. (Springer Verlag, Heidelberg, Germany, 2002).CrossRefGoogle Scholar
21.Munzinger, M., Optimization of adhesive joints based on the model of nature. Ph.D. Thesis, Universität Karlsruhe, Karlsruhe, Germany (2005, in press).Google Scholar
22.Scherge, M., Gorg, S.: Biological Micro- and Nanotribology 1st ed. (Springer Verlag, Heidelberg, Germany, 2001).CrossRefGoogle Scholar
23.Munzinger, M., Mattheck, C.: CA3O—A new optimization method for adhesive joints modelled on nature. Mater. Wiss. Werkstofftechnik 36(7), 320 (2005).Google Scholar
24.Courty, D.: Calculation and optimization of natural and technical adhesive joints using the CA3O method. Dipl. Thesis, Universität Karlsruhe, Institut für Zuverlässigkeit von Bauteilen und Systemen, Karlsruhe, Germany (2005).Google Scholar
25.Mayer, O.: Experimental investigation of an adhesive joint optimized by using the CA3O method, Bachelor Thesis, Forschungszentrum Karlsruhe GmbH, Karlsruhe, Germany (2005).Google Scholar