Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T10:30:35.006Z Has data issue: false hasContentIssue false

Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part III. Electrical properties

Published online by Cambridge University Press:  03 March 2011

G.R. Fox
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
S.B. Krupanidhi
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

This paper, the third and final of a three part series, presents the electrical properties of postdeposition annealed, lead lanthanum titanate (PLT) thin films deposited by multi-ion-beam reactive sputtering (MIBERS). Also, a model is presented that explains the relations among composition, crystallographic structure, microstructure, and electrical properties of the PLT thin films. Thin films of PLT consisting of the perovskite phase exhibit 〈100〉 textured microstructures. Addition of a critical quantity of excess PbO results in the loss of this 〈100〉 texture, and continuity of the perovskite phase is disrupted while both excess PbO and porosity phases become continuous due to a percolation effect. Films with textured microstructures consisting of a continuous perovskite phase exhibit relatively high dc resistivities, high dielectric permittivities, and high remanent polarizations. At the transition between textured and nontextured microstructures, a discontinuous drop in the electrical properties occurs due to the ensuing continuity of the excess PbO and porosity. These composition-induced changes in the electrical properties were quantitatively modeled by applying a simple mixing rule model to the microstructure model developed in Part II of this series.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Pauling, L., The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Ithaca, NY, 1960).Google Scholar
2Abrahams, S. C., Kurtz, S. K., and Jamieson, P. B., Phys. Rev. 172 (2), 551 (1968).CrossRefGoogle Scholar
3Jona, F. and Shirane, G., Ferroelectric Crystals (Pergamon Press Inc., New York, 1962), pp. 160171.Google Scholar
4Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley & Sons, Inc., New York, 1976), pp. 516580.Google Scholar
5Fox, G. R., Krupanidhi, S. B., More, K. L., and Allard, L. F., J. Mater. Res. 7, 3039 (1992).Google Scholar
6Fox, G. R., Krupanidhi, S. B., and More, K. L., J. Mater. Res. 8, 2191 (1993).Google Scholar
7Geideman, W. A., IEEE Trans. Ultrason. Ferroelec. Freq. Control 38 (6), 704 (1991).CrossRefGoogle Scholar
8Parker, L. H. and Tasch, A. F., IEEE Circ. Dev. Mag. 6, 17 (1990).Google Scholar
9Adachi, H., Mitsuyu, T., Yamazaki, O., and Wasa, K., Jpn. J. Appl. Phys., Supplement 24-2 24, 287 (1985).Google Scholar
10Takayama, R., Tomita, Y., Iijima, K., and Ueda, I., J. Appl. Phys. 61 (1), 411 (1987).Google Scholar
11Land, C. E., J. Am. Ceram. Soc. 72 (11), 2059 (1989).CrossRefGoogle Scholar
12Hennings, D. and Härdtl, K. H., Phys. Status Solidi A 3, 465 (1970).CrossRefGoogle Scholar
13Hennings, D. and Rosenstein, G., Mater. Res. Bull. VII, 1505 (1972).CrossRefGoogle Scholar
14Yamamoto, T., Igarashi, H., and Okazaki, K., J. Am. Ceram. Soc. 66 (5), 363 (1983).CrossRefGoogle Scholar
15Keizer, K. and Burggraaf, A. J., Ferroelectrics 14, 671 (1976).Google Scholar
16van Beek, L. K. H., in Progress in Dielectrics, edited by Birks, J. B. (Heywood Books, London, England, 1967), Vol. 7, pp. 69114.Google Scholar
17Mercury Probe, Model Hg-102RD, MSI Electronics, Inc., Wood-side, NY.Google Scholar
18Programmable Electrometer, Model 617, Keithley, Cleveland, OH.Google Scholar
19Computer, Model 9121, Hewlett Packard.Google Scholar
20Impedance Analyzer 5 Hz–13 MHz, Model 4192A, Hewlett Packard.Google Scholar
21Von Hippel, A. R., Dielectrics and Waves (John Wiley & Sons, Inc., New York, 1954), pp. 8691.Google Scholar
22Pulse Generator, Model 24B, Hewlett Packard.Google Scholar
23Tektronix Digital Oscilloscope, Model 2430A, Tektronix Inc., Beaverton, OR.Google Scholar
24Gurevich, V. M., Electric Conductivity ofFerroelectrics (U. S. Department of Commerce, National Technical Service Information Service, Springfield, VA, 1971), pp. 129.Google Scholar
25Brown, H. E., Lead Oxide-Properties and Applications (International Lead Zinc Research Organization, Inc., New York, 1985), pp. 153193.Google Scholar
26Weast, R. C., CRC Handbook of Chemistry and Physics, 64th ed. (CRC Press, Inc., Boca Raton, FL, 1983), p. E-76.Google Scholar
27Henisch, H. K., Semiconductor Contacts (Clarendon Press, Oxford, 1984).Google Scholar
28Fox, G. R. and Krupanidhi, S. B., J. Appl. Phys. 74 (3), (1993).Google Scholar
29Fox, G. R., Composition/Structure/Property Relations of Ferroelectric Lead-Lanthanum-Titanate Thin Films Deposited by Multi-Ion-Beam Reactive Sputtering, Ph.D. Thesis, The Pennsylvania State University (1992).Google Scholar
30Fox, G. R., Breval, E., and Newnham, R. E., J. Mater. Sci. 26, 2566 (1991).CrossRefGoogle Scholar
31Yamaguchi, O., Narai, A., and Komatsu, T., J. Am. Ceram. Soc. 69 (10), C-256 (1986).Google Scholar
32Ishikawa, K., Yoshikawa, K., and Okada, N., Phys. Rev. B 37 (10), 5852 (1988).CrossRefGoogle Scholar
33McLachlan, D. S., Blaszkiewics, M., and Newnham, R. E., J. Am. Ceram. Soc. 73 (8), 2187 (1990).CrossRefGoogle Scholar