Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T10:43:31.017Z Has data issue: false hasContentIssue false

Combustion synthesis and photoelectrochemical characterization of gallium zinc oxynitrides

Published online by Cambridge University Press:  06 November 2018

Austin E. Kennedy
Affiliation:
Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
Benjamin H. Meekins*
Affiliation:
Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
*
a)Address all correspondence to this author. e-mail: ben.meekins@gmail.com
Get access

Abstract

We report a rapid combustion synthesis method for producing band gap tunable gallium zinc oxynitrides, a material of interest for water splitting applications. By varying the ratio of zinc and gallium, we can tune the band gap from 2.22 to 2.8 eV. Furthermore, nitrogen can be incorporated up to nearly 50% via replacement of oxygen without the need for high temperatures or an additional ammonolysis step. X-ray photoelectron spectroscopy (XPS) and EDX analysis suggests a preferential segregation of Zn to the surface of the as-synthesized particles, though the surface Ga/Zn molar ratio in the as-synthesized particles is correlated with the Ga/Zn molar ratio of the precursor materials. Photoelectrochemical measurements show that the oxynitride powders are photoactive under both AM1.5 and visible-only (λ > 435 nm) irradiation. Hydrogen and oxygen were both evolved in half-reaction experiments under simulated AM1.5 irradiation without externally applied bias, although addition of an OER catalyst did not enhance the rate of oxygen formation, suggesting that intra- and interparticle recombination are significant.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., and Nocera, D.G.: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474 (2010).CrossRefGoogle ScholarPubMed
Fujishima, A. and Honda, K.: Electrochemical photolysis at a semiconductor electrode. Nature 238, 37 (1972).CrossRefGoogle Scholar
Fujishima, A. and Kohayakawa, K.: Hydrogen production under sunlight with an electrochemical photocell. J. Electrochem. Soc. 122, 1487 (1975).CrossRefGoogle Scholar
Ikarashi, K., Sato, J., Kobayashi, H., Saito, N., Nishiyama, H., and Inoue, Y.: Photocatalysis for water decomposition by RuO2-dispersed ZnGa2O4 with d10 configuration. J. Phys. Chem. B 106, 9048 (2002).CrossRefGoogle Scholar
Carr, R.G. and Somorjai, G.A.: Hydrogen production from photolysis of steam adsorbed onto platinized SrTiO3. Nature 290, 576 (1981).CrossRefGoogle Scholar
Domen, K., Kudo, A., Onishi, T., Kosugi, N., and Kuroda, H.: Photocatalytic decomposition of water into H2 and O2 over NiO–SrTiO3 powder. 1. Structure of the catalyst. J. Phys. Chem. 90, 292 (1986).CrossRefGoogle Scholar
Domen, K., Naito, S., Onishi, T., Tamaru, K., and Soma, M.: Study of the photocatalytic decomposition of water vapor over a NiO–SrTiO3 catalyst. J. Phys. Chem. 86, 3657 (1982).CrossRefGoogle Scholar
Hahn, N.T., Hoang, S., Self, J.L., and Mullins, C.B.: Spray pyrolysis deposition and photoelectrochemical properties of n-type BiOI nanoplatelet thin films. ACS Nano 6, 7712 (2012).CrossRefGoogle ScholarPubMed
Ma, G., Chen, S., Kuang, Y., Akiyama, S., Hisatomi, T., Nakabayashi, M., Shibata, N., Katayama, M., Minegishi, T., and Domen, K.: Visible light-driven Z-scheme water splitting using oxysulfide H2 evolution photocatalysts. J. Phys. Chem. Lett. 7, 3892 (2016).CrossRefGoogle ScholarPubMed
Pan, C., Takata, T., Nakabayashi, M., Matsumoto, T., Shibata, N., Ikuhara, Y., and Domen, K.: A complex perovskite-type oxynitride: The first photocatalyst for water splitting operable at up to 600nm. Angew. Chem., Int. Ed. 54, 2955 (2015).CrossRefGoogle Scholar
Hosono, A., Sun, S-K., Masubuchi, Y., and Kikkawa, S.: Additive sintering and post-ammonolysis of dielectric BaTaO2N oxynitride perovskite. J. Eur. Ceram. Soc. 36, 3341 (2016).CrossRefGoogle Scholar
Gao, H., Zhao, M., Yan, S., Zhou, P., Li, Z., Zou, Z., and Liu, Q.: Anatase Mg(0.05)Ta(0.95)O(1.15)N(0.85): A novel photocatalyst for solar hydrogen production. RSC Adv. 6, 86240 (2016).CrossRefGoogle Scholar
Pan, Z., Hisatomi, T., Wang, Q., Nakabayashi, M., Shibata, N., Pan, C., Takata, T., and Domen, K.: Application of LaMg1/3Ta2/3O2N as a hydrogen evolution photocatalyst of a photocatalyst sheet for Z-scheme water splitting. Appl. Catal., A 521, 26 (2016).CrossRefGoogle Scholar
Maeda, K., Lu, D.L., and Domen, K.: Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d(0) electronic configuration. Chem.–Eur. J. 19, 4986 (2013).CrossRefGoogle ScholarPubMed
Kamata, K., Maeda, K., Lu, D., Kako, Y., and Domen, K.: Synthesis and photocatalytic activity of gallium–zinc–indium mixed oxynitride for hydrogen and oxygen evolution under visible light. Chem. Phys. Lett. 470, 90 (2009).CrossRefGoogle Scholar
Maeda, K., Takata, T., Hara, M., Saito, N., Inoue, Y., Kobayashi, H., and Domen, K.: GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 8286 (2005).CrossRefGoogle ScholarPubMed
Teramura, K., Maeda, K., Saito, T., Takata, T., Saito, N., Inoue, Y., and Domen, K.: Characterization of ruthenium oxide nanocluster as a cocatalyst with (Ga1−xZnx)(N1−xOx) for photocatalytic overall water splitting. J. Phys. Chem. B 109, 21915 (2005).CrossRefGoogle Scholar
Kodera, M., Urabe, H., Katayama, M., Hisatomi, T., Minegishi, T., and Domen, K.: Effects of flux synthesis on SrNbO2N particles for photoelectrochemical water splitting. J. Mater. Chem. A 4, 7658 (2016).CrossRefGoogle Scholar
Higashi, M., Domen, K., and Abe, R.: Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting. J. Am. Chem. Soc. 135, 10238 (2013).CrossRefGoogle ScholarPubMed
Higashi, M., Domen, K., and Abe, R.: Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ. Sci. 4, 4138 (2011).CrossRefGoogle Scholar
Higashi, M., Domen, K., and Abe, R.: Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J. Am. Chem. Soc. 134, 6968 (2012).CrossRefGoogle ScholarPubMed
Maeda, K. and Domen, K.: New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111, 7851 (2007).CrossRefGoogle Scholar
Pan, C., Takata, T., and Domen, K.: Overall water splitting on the transition-metal oxynitride photocatalyst LaMg1/3Ta2/3O2N over a large portion of the visible-light spectrum. Chem.–Eur. J. 22, 1854 (2016).CrossRefGoogle Scholar
Chun, W-J., Ishikawa, A., Fujisawa, H., Takata, T., Kondo, J.N., Hara, M., Kawai, M., Matsumoto, Y., and Domen, K.: Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 107, 1798 (2003).CrossRefGoogle Scholar
Lee, Y., Terashima, H., Shimodaira, Y., Teramura, K., Hara, M., Kobayashi, H., Domen, K., and Yashima, M.: Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J. Phys. Chem. C 111, 1042 (2007).CrossRefGoogle Scholar
Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R., and Domen, K.: SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. J. Am. Chem. Soc. 133, 12334 (2011).CrossRefGoogle ScholarPubMed
Hitoki, G., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., and Domen, K.: An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation ( λ ≤ 500 nm). Chem. Commun. 0, 1698 (2002).CrossRefGoogle Scholar
Aruna, S.T. and Mukasyan, A.S.: Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12, 44 (2008).CrossRefGoogle Scholar
Yermekova, Z., Mansurov, Z., and Mukasyan, A.S.: Combustion synthesis of silicon nanopowders. Int. J. Self-Propag. High-Temp. Synth. 19, 94 (2010).CrossRefGoogle Scholar
Nersisyan, H.H., Lee, J.H., and Won, C.W.: Self-propagating high-temperature synthesis of nano-sized titanium carbide powder. J. Mater. Res. 17, 2859 (2002).CrossRefGoogle Scholar
Limsay, R.H., Tayade, R.A., Talwatkar, C.B., Yawale, S.P., Yawale, S.S., and Bhavsar, R.S.: Solution combustion synthesis of CaZrO3 using mixed fuel. Int. J. Mod. Phys. B 24, 6107 (2010).CrossRefGoogle Scholar
Sathish, M., Viswanathan, B., Viswanath, R.P., and Gopinath, C.S.: Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater. 17, 6349 (2005).CrossRefGoogle Scholar
Mapa, M., Sivaranjani, K., Bhange, D.S., Saha, B., Chakraborty, P., Viswanath, A.K., and Gopinath, C.S.: Structure, electronic structure, optical, and dehydrogenation catalytic study of (Zn1−zInz)(O1−xNx) solid solution. Chem. Mater. 22, 565 (2010).CrossRefGoogle Scholar
RajaAmbal, S., Yadav, A.K., Jha, S.N., Bhattacharyya, D., and Gopinath, C.S.: Electronic structure–sunlight driven water splitting activity correlation of (Zn1−yGay )(O1−zNz). Phys. Chem. Chem. Phys. 16, 23654 (2014).CrossRefGoogle Scholar
Meekins, B.H., Lin, Y-C., Manser, J.S., Manukyan, K., Mukasyan, A.S., Kamat, P.V., and McGinn, P.J.: Photoactive porous silicon nanopowder. ACS Appl. Mater. Interfaces 5, 2943 (2013).CrossRefGoogle ScholarPubMed
Gao, Q., Giordano, C., and Antonietti, M.: Controlled synthesis of tantalum oxynitride and nitride nanoparticles. Small 7, 3334 (2011).CrossRefGoogle ScholarPubMed
Giordano, C., Erpen, C., Yao, W., Milke, B., and Antonietti, M.: Metal nitride and metal carbide nanoparticles by a soft urea pathway. Chem. Mater. 21, 5136 (2009).CrossRefGoogle Scholar
Gomathi, A. and Rao, C.N.R.: Nanostructures of the binary nitrides, BN, TiN, and NbN, prepared by the urea-route. Mater. Res. Bull. 41, 941 (2006).CrossRefGoogle Scholar
Qiu, Y. and Gao, L.: Novel synthesis of nanocrystalline gallium nitride powder from gallium(III)–urea complex. Chem. Lett. 32, 774 (2003).CrossRefGoogle Scholar
Buha, J., Djerdj, I., Antonietti, M., and Niederberger, M.: Thermal transformation of metal oxide nanoparticles into nanocrystalline metal nitrides using cyanamide and urea as nitrogen source. Chem. Mater. 19, 3499 (2007).CrossRefGoogle Scholar
Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V.: Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493 (2016).CrossRefGoogle ScholarPubMed
Abbas, M.A., Basit, M.A., Yoon, S.J., Lee, G.J., Lee, M.D., Park, T.J., Kamat, P.V., and Bang, J.H.: Revival of solar paint concept: Air-processable solar paints for the fabrication of quantum dot-sensitized solar cells. J. Phys. Chem. C 121, 17658 (2017).CrossRefGoogle Scholar
Maeda, K., Teramura, K., Lu, D., Saito, N., Inoue, Y., and Domen, K.: Noble-Metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 45, 7806 (2006).CrossRefGoogle Scholar
Schaber, P.M., Colson, J., Higgins, S., Thielen, D., Anspach, B., and Brauer, J.: Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 424, 131 (2004).CrossRefGoogle Scholar
Fujishima, A., Kato, T., Maekawa, E., and Honda, K.: Mechanism of the current doubling effect. I. The ZnO photoanode in aqueous solution of sodium formate. Bull. Chem. Soc. Jpn. 54, 1671 (1981).CrossRefGoogle Scholar
Trapalis, A., Heffernan, J., Farrer, I., Sharman, J., and Kean, A.: Low resistance ohmic contacts on wide band‐gap GaN. Appl. Phys. Lett. 64, 1003 (1994).Google Scholar
Oshima, T., Niwa, M., Mukai, A., Nagami, T., Suyama, T., and Ohtomo, A.: Epitaxial growth of wide-band-gap ZnGa2O4 films by mist chemical vapor deposition. J. Cryst. Growth 386, 190 (2014).CrossRefGoogle Scholar
Tessier, F., Maillard, P., Cheviré, F., Domen, K., and Kikkawa, S.: Optical properties of oxynitride powders. J. Ceram. Soc. Jpn. 117, 1 (2009).CrossRefGoogle Scholar
Maeda, K., Teramura, K., Takata, T., Hara, M., Saito, N., Toda, K., Inoue, Y., Kobayashi, H., and Domen, K.: Overall water splitting on (Ga1−xZnx)(N1−xOx) solid solution photocatalyst: Relationship between physical properties and photocatalytic activity. J. Phys. Chem. B 109, 20504 (2005).CrossRefGoogle Scholar
Lu, J., Zhang, Q., Wang, J., Saito, F., and Uchida, M.: Synthesis of N-Doped ZnO by grinding and subsequent heating ZnO-urea mixture. Powder Technol. 162, 33 (2006).CrossRefGoogle Scholar
Structural, electrical, and optical characterization of as grown and oxidized zinc nitride thin films. J. Appl. Phys. 120, 205102 (2016).CrossRefGoogle Scholar
He, G., Chikyow, T., Chen, X., Chen, H., Liu, J., and Sun, Z.: Cathodoluminescence and field emission from GaN/MgAl2O4 grown by metalorganic chemical vapor deposition: Substrate-orientation dependence. J. Mater. Chem. C 1, 238 (2013).CrossRefGoogle Scholar
Rignanese, G-M., Pasquarello, A., Charlier, J-C., Gonze, X., and Car, R.: Nitrogen incorporation at Si(001)-SiO2 interfaces: Relation between N 1s core-level shifts and microscopic structure. Phys. Rev. Lett. 79, 5174 (1997).CrossRefGoogle Scholar
Stefik, M.: Atomic layer deposition of bismuth vanadates for solar energy materials. ChemSusChem 9, 1727 (2016).CrossRefGoogle ScholarPubMed
Hashiguchi, H., Maeda, K., Abe, R., Ishikawa, A., Kubota, J., and Domen, K.: Photoresponse of GaN:ZnO electrode on FTO under visible light irradiation. Bull. Chem. Soc. Jpn. 82, 401 (2009).CrossRefGoogle Scholar
Kasahara, A., Nukumizu, K., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., and Domen, K.: LaTiO2N as a visible-light (≤600 nm)-Driven photocatalyst (2). J. Phys. Chem. B 107, 791 (2003).CrossRefGoogle Scholar
Vayssieres, L.: On Solar Hydrogen and Nanotechnology (John Wiley & Sons, San Diego, California, 2010); pp. 223225.CrossRefGoogle Scholar
Abe, R., Higashi, M., and Domen, K.: Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. J. Am. Chem. Soc. 132, 11828 (2010).CrossRefGoogle ScholarPubMed
Minegishi, T., Nishimura, N., Kubota, J., and Domen, K.: Photoelectrochemical properties of LaTiO2N electrodes prepared by particle transfer for sunlight-driven water splitting. Chem. Sci. 4, 1120 (2013).CrossRefGoogle Scholar
Supplementary material: Image

Kennedy and Meekins supplementary material

Kennedy and Meekins supplementary material 1

Download Kennedy and Meekins supplementary material(Image)
Image 787.3 KB
Supplementary material: Image

Kennedy and Meekins supplementary material

Kennedy and Meekins supplementary material 2

Download Kennedy and Meekins supplementary material(Image)
Image 535.5 KB
Supplementary material: Image

Kennedy and Meekins supplementary material

Kennedy and Meekins supplementary material 3

Download Kennedy and Meekins supplementary material(Image)
Image 402.2 KB
Supplementary material: Image

Kennedy and Meekins supplementary material

Kennedy and Meekins supplementary material 4

Download Kennedy and Meekins supplementary material(Image)
Image 206.9 KB
Supplementary material: Image

Kennedy and Meekins supplementary material

Kennedy and Meekins supplementary material 5

Download Kennedy and Meekins supplementary material(Image)
Image 64.7 KB
Supplementary material: Image

Kennedy and Meekins supplementary material

Kennedy and Meekins supplementary material 6

Download Kennedy and Meekins supplementary material(Image)
Image 56.4 KB
Supplementary material: Image

Kennedy and Meekins supplementary material

Kennedy and Meekins supplementary material 7

Download Kennedy and Meekins supplementary material(Image)
Image 854.3 KB
Supplementary material: File

Kennedy and Meekins supplementary material

Kennedy and Meekins supplementary material 8

Download Kennedy and Meekins supplementary material(File)
File 918.9 KB
Supplementary material: Image

Kennedy and Meekins supplementary material

Kennedy and Meekins supplementary material 9

Download Kennedy and Meekins supplementary material(Image)
Image 50.2 KB
Supplementary material: Image

Kennedy and Meekins supplementary material

Kennedy and Meekins supplementary material 10

Download Kennedy and Meekins supplementary material(Image)
Image 60.6 KB