Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T00:37:36.516Z Has data issue: false hasContentIssue false

Combining reactive sputtering and rapid thermal processing for synthesis and discovery of metal oxynitrides

Published online by Cambridge University Press:  27 May 2015

Lan Zhou
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA
Santosh K. Suram
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA
Natalie Becerra-Stasiewicz
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA
Slobodan Mitrovic
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA
Kevin Kan
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA
Ryan J.R. Jones
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA
John M. Gregoire*
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA
*
a)Address all correspondence to this author. e-mail: gregoire@caltech.edu
Get access

Abstract

Recent efforts have demonstrated enhanced tailoring of material functionality with mixed anion materials, yet exploratory research with mixed anion chemistries is limited by the sensitivity of these materials to synthesis conditions. Synthesis of a particular metal oxynitride compound by traditional reactive annealing requires specific, limited ranges of both oxygen and nitrogen chemical potentials to establish equilibrium between the solid-state material and a reactive atmosphere. Using Ta–O–N as an example system, we describe a combination of reactive sputter deposition and rapid thermal processing (RTP) for synthesis of mixed anion inorganic materials. Heuristic optimization of reactive gas pressures to attain a desired anion stoichiometry is discussed, and the ability of RTP to enable amorphous to crystalline transitions without preferential anion loss is demonstrated through the controlled synthesis of nitride, oxide, and oxynitride phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xie, R-J. and Bert Hintzen, H.T.: Optical properties of (oxy)nitride materials: A review. J. Am. Ceram. Soc. 96, 665 (2013).CrossRefGoogle Scholar
Moriya, Y., Takata, T., and Domen, K.: Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord. Chem. Rev. 257, 1957 (2013).Google Scholar
Ishikawa, A., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., and Domen, K.: Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm). J. Am. Chem. Soc. 134, 13547 (2002).Google Scholar
Ueda, K., Inoue, S., Hirose, S., Kawazoe, H., and Hosono, H.: Transparent p-type semiconductor: LaCuOS layered oxysulfide. Appl. Phys. Lett. 77, 2701 (2000).CrossRefGoogle Scholar
Pei, Y-L., He, J., Li, J-F., Li, F., Liu, Q., Pan, W., Barreteau, C., Berardan, D., Dragoe, N., and Zhao, L-D.: High thermoelectric performance of oxyselenides: Intrinsically low thermal conductivity of Ca-doped. BiCuSeO. NPG Asia Mater. 5, e47 (2013).Google Scholar
Wei, W-C.J. and Lo, M-H.: Processing and properties of (Mo,Cr) oxycarbides from MOCVD. Appl. Organomet. Chem. 12, 201 (1998).Google Scholar
Jhi, S-h., Ihm, J., and Louie, S.G.: Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 399, 1 (1999).CrossRefGoogle Scholar
Müller, K-H. and Narozhnyi, V.N.: Interaction of superconductivity and magnetism in borocarbide superconductors. Rep. Prog. Phys. 64, 943 (2001).CrossRefGoogle Scholar
Imamura, N., Mizoguchi, H., and Hosono, H.: Superconductivity in LaT(M)BN and La3T(M2)B2N3 (T(M) = transition metal) synthesized under high pressure. J. Am. Chem. Soc. 134(5), 2516 (2012).CrossRefGoogle ScholarPubMed
Yang, M., Oró-Solé, J., Rodgers, J.A., Jorge, A.B., Fuertes, A., and Attfield, J.P.: Anion order in perovskite oxynitrides. Nat. Chem. 3, 47 (2011).Google Scholar
Schottenfeld, J.A., Benesi, A.J., Stephens, P.W., Chen, G., Eklund, P.C., and Mallouk, T.E.: Structural analysis and characterization of layer perovskite oxynitrides made from Dion–Jacobson oxide precursors. J. Solid State Chem. 178, 2313 (2005).CrossRefGoogle Scholar
Green, M.L., Takeuchi, I., and Hattrick-Simpers, J.R.: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113, 231101 (2013).Google Scholar
Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446 (2010).Google Scholar
Wu, Y.B., Lazic, P., Hautier, G., Persson, K., and Ceder, G.: First principles high throughput screening of oxynitrides for water-splitting photocatalysts. Energy Environ. Sci. 6(1), 157 (2013).Google Scholar
Ebbinghaus, S.G., Abicht, H-P., Dronskowski, R., Müller, T., Reller, A., and Weidenkaff, A.: Perovskite-related oxynitrides—Recent developments in synthesis, characterisation and investigations of physical properties. Prog. Solid State Chem. 37, 173 (2009).Google Scholar
Pokrant, S., Maegli, A.E., Chiarello, G.L., and Weidenkaff, A.: Perovskite-related oxynitrides in photocatalysis. Chimia 67, 162 (2013).CrossRefGoogle ScholarPubMed
Dupuis, J., Fourmond, E., Ballutaud, D., Bererd, N., and Lemiti, M.: Optical and structural properties of silicon oxynitride deposited by plasma enhanced chemical vapor deposition. Thin Solid Films 519, 1325 (2010).CrossRefGoogle Scholar
Kim, Y-I., Paik, Y., and Avdeev, M.: Intercalation route to complex perovskites AM0.2Ta0.8O2.8N0.2 (A = Sr, Ba; M = Li, Na): Neutron diffraction and nuclear magnetic resonance study. Cryst. Growth Des. 15, 5361 (2014).CrossRefGoogle Scholar
Laurikaitis, M., Dudonis, J., and Milčius, D.: Deposition of zirconium oxynitride films by reactive cathodic arc evaporation and investigation of physical properties. Thin Solid Films 516, 1549 (2008).Google Scholar
Mohamed, S.H. and Anders, A.: Structural, optical, and electrical properties of WOx(Ny) films deposited by reactive dual magnetron sputtering. Surf. Coat. Technol. 201, 2977 (2006).CrossRefGoogle Scholar
Mohamed, S.H., Abd El-Rahman, A.M., and Ahmed, M.R.: Investigation of zirconium oxynitride thin films deposited by reactive pulsed magnetron sputtering. J. Phys. D: Appl. Phys. 40, 7057 (2007).CrossRefGoogle Scholar
Matylitskaya, V.A., Bock, W., Thoma, K., and Kolbesen, B.O.: Formation of niobium oxynitrides by rapid thermal processing (RTP). Appl. Surf. Sci. 252, 205 (2005).Google Scholar
Cristea, D., Crisan, A., Barradas, N.P., Alves, E., Moura, C., Vaz, F., and Cunha, L.: Development of tantalum oxynitride thin films produced by PVD: Study of structural stability. Appl. Surf. Sci. 285, 19 (2013).Google Scholar
Ford, J., Welch, A., Caskey, C., Van Zeghbroeck, B., Parilla, P., Ginley, D., Zakutayev, A., and Perkins, J.: Sulfide and oxide-sulfide combinatorial libraries by co-sputtering with an atomic sulfur source. Bull. Am. Phys. Soc. 59(1), (2014).Google Scholar
Venkataraj, S., Kappertz, O., Jayavel, R., and Wuttig, M.: Growth and characterization of zirconium oxynitride films prepared by reactive direct current magnetron sputtering. J. Appl. Phys. 92, 2461 (2002).Google Scholar
Venkataraj, S., Kittur, H., Drese, R., and Wuttig, M.: Multi-technique characterization of tantalum oxynitride films prepared by reactive direct current magnetron sputtering. Thin Solid Films 514, 1 (2006).Google Scholar
Mohamed, S.H., Kappertz, O., Ngaruiya, J.M., Niemeier, T., Drese, R., Detemple, R., Wakkad, M.M., and Wuttig, M.: Influence of nitrogen content on properties of direct current sputtered TiOxNy films. Phys. Status Solidi A 201, 90 (2004).Google Scholar
Chung, C.K., Chen, T.S., and Chang, N.W.: Effect of reactive gases flow ratios on the microstructure and electrical resistivity of Ta–N–O thin films by reactive co-sputtering. Thin Solid Films 519, 5099 (2011).Google Scholar
Chappé, J-M., Martin, N., Lintymer, J., Sthal, F., Terwagne, G., and Takadoum, J.: Titanium oxynitride thin films sputter deposited by the reactive gas pulsing process. Appl. Surf. Sci. 253, 5312 (2007).Google Scholar
Rawal, S.K., Chawla, A.K., Jayaganthan, R., and Chandra, R.: Effect of power variation on wettability and optical properties of co-sputtered titanium and zirconium oxynitride films. Bull. Mater. Sci. 36, 403 (2013).Google Scholar
Tao, J., Chai, J.W., Wong, L.M., Zhang, Z., Pan, J.S., and Wang, S.J.: Growth of single crystalline TaON on yttria-stabilized zirconia (YSZ). J. Solid State Chem. 204, 27 (2013).CrossRefGoogle Scholar
Hitoki, G., Takata, T., Kondo, J.N., Hara, M., Kobayashi, H., and Domen, K.: An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (lambda < or = 500 nm). Chem. Commun. 2, 1698 (2002).CrossRefGoogle Scholar
Hollands, E. and Campbell, D.S.: The mechanism of reactive sputtering. J. Mater. Sci. 3, 544 (1968).Google Scholar
Supplementary material: PDF

Zhou supplementary material S1

Supplementary document

Download Zhou supplementary material S1(PDF)
PDF 255.4 KB