Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:36:40.604Z Has data issue: false hasContentIssue false

Characterization of thin films containing zirconium, oxygen, and sulfur by scanning electron and atomic force microscopy

Published online by Cambridge University Press:  31 January 2011

A. Fischer
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Anorganische Chemie, Faradayweg 4–6, 14195 Berlin (Dahlem), Germany
F. C. Jentoft
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Anorganische Chemie, Faradayweg 4–6, 14195 Berlin (Dahlem), Germany
G. Weinberg
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Anorganische Chemie, Faradayweg 4–6, 14195 Berlin (Dahlem), Germany
R. Schlögl
Affiliation:
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung Anorganische Chemie, Faradayweg 4–6, 14195 Berlin (Dahlem), Germany
T. P. Niesen
Affiliation:
Max-Planck-Institut für Metallforschung und Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstraβe 5, 70569 Stuttgart, Germany
J. Bill
Affiliation:
Max-Planck-Institut für Metallforschung und Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstraβe 5, 70569 Stuttgart, Germany
F. Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung und Institut für Nichtmetallische Anorganische Materialien, Pulvermetallurgisches Laboratorium, Heisenbergstraβe 5, 70569 Stuttgart, Germany
M. R. De Guire
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106–7204
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Seestraβe 92, 70174 Stuttgart, Germany
Get access

Abstract

Oxidic zirconium films prepared by chemical deposition from aqueous medium on sulfonic acid terminated self-assembled monolayers attached to an oxidized silicon surface were investigated with scanning electron microscopy and atomic force microscopy. Bulk precipitate forms in the 4 mM Zr(SO4)2 · 4H2O, 0.4 N HCl deposition medium at 343 K after approximately 30 min. Precipitate particles (200 nm and larger) were found embedded in the oxidic zirconium film and adsorbed on top of the film; they could be washed off, but patches of the film were removed. Working with unstable deposition solutions, in which homogeneous nucleation occurs, leads to preparation-inherent flaws in the film.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shane, M. and Mecartney, M.L., J. Mater. Sci. 25, 1537 (1990).CrossRefGoogle Scholar
2.Atik, M., Zarzycki, J., and R'Kha, C., J. Mater. Sci. Lett. 13, 266 (1994).CrossRefGoogle Scholar
3.Di Maggio, R., Fedrizzi, L., Rossi, S., and Scardi, P., Thin Solid Films 286, 127 (1996).CrossRefGoogle Scholar
4.Quinson, J.F., Chino, C., Becdelievre, A.M., Guizard, C., and Brunel, M., J. Mater. Sci. 31, 5179 (1996).CrossRefGoogle Scholar
5.Maskalick, N.J. and Sun, C.C., J. Electrochem. Soc. 118, 1386 (1971).CrossRefGoogle Scholar
6.Croset, M., Schnell, P., and Valesco, G., J. Vac. Sci. Technol. 14, 777 (1977).CrossRefGoogle Scholar
7.Miyahara, Y., Tsukada, K., and Miyagi, H., J. Appl. Phys. 63, 2431 (1988).CrossRefGoogle Scholar
8.Apparao, K.V.S.R, Sahoo, N.K., and Bagchi, T.C., Thin Solid Films 129, L71 (1985).CrossRefGoogle Scholar
9.Duparré, A., Welsch, E., Walther, H-G., Kaiser, N., Müller, H., Hacker, E., Lauth, H., Meyer, J., and Weissbrodt, P., Thin Solid Films 187, 275 (1990).CrossRefGoogle Scholar
10.Hino, M., Kobayashi, S., and Arata, K., J. Am. Chem. Soc. 101, 6439 (1979).CrossRefGoogle Scholar
11.Song, X. and Sayari, A., Catal. Rev.-Sci. Engr. 38, 329 (1996).CrossRefGoogle Scholar
12.Bunker, B.C., Rieke, P.C., Tarasevich, B.J., Campbell, A.A., Fryxell, G.E., Graff, G.L., Song, L., Liu, J., Virden, J.W., and McVay, G.L., Science 264, 48 (1994).CrossRefGoogle Scholar
13.Netzer, L. and Sagiv, J., J. Am. Chem. Soc. 105, 674 (1983).CrossRefGoogle Scholar
14.Collins, R. and Sukenik, C.N., Langmuir 11, 2322 (1995).CrossRefGoogle Scholar
15.Ulman, A., Chem. Rev. 96, 1533 (1996).CrossRefGoogle Scholar
16.De Guire, M.R., Shin, H., Collins, R., Agarwal, M., Sukenik, C.N., and Heuer, A., Proc. SPIE 2686, 88 (1996).CrossRefGoogle Scholar
17.Agarwal, M., De Guire, M.R., and Heuer, A.H., J. Am. Ceram. Soc. 80, 2967 (1997).CrossRefGoogle Scholar
18.Agarwal, M., De Guire, M.R., and Heuer, A.H., Appl. Phys. Lett. 71, 891 (1997).CrossRefGoogle Scholar
19.Shin, H., Agarwal, M., De Guire, M.R., and Heuer, A., J. Am. Ceram. Soc. 79, 1975 (1996).CrossRefGoogle Scholar
20.Shin, H., Collins, R.J., De Guire, M.R., Heuer, A.H., and Sukenik, C.N., J. Mater. Res. 10, 692 (1995).CrossRefGoogle Scholar
21.Agarwal, M., Ph.D. Dissertation, Case Western Reserve University, Cleveland, Ohio, (1996).Google Scholar
22.Supothina, S. and De Guire, M.R. (unpublished).Google Scholar
23.Rieke, P.C., Marsh, B.D., Wood, L.L., Tarasevich, B.J., Liu, J., Song, L., and Fryxell, G.E., Langmuir 11, 318 (1995).CrossRefGoogle Scholar
24.Rieke, P.C., Wiecek, R., Marsh, B.D., Wood, L.L., Liu, J., Song, L., Fryxell, G.E., and Tarasevich, B.J., Langmuir 12, 4266 (1996).CrossRefGoogle Scholar
25.Wang, Y., Supothina, S., De Guire, M.R., Heuer, A.H., Collins, R.J., and Sukenik, C.N., Chem. Mater. 10, 21352144 (1998).CrossRefGoogle Scholar
26.Niesen, T.P., Wolff, J., Bill, J., Wagner, T., and Aldinger, F., in World Forum on New Materials, Symp. III—Surf. Engr., edited by Vincencini, P. (Adv. Sci. Techol. 20, Techna, Florence, Italy, 1999), p. 27.Google Scholar
27.De Guire, M.R., Niesen, T.P., Wolff, J., Supothina, S., Bill, J., Aldinger, F., and Rühle, M., in Proceedings of the Workshop on Grain Boundary Dynamics of Precursor-Derived Covalent Ceramics, Schloss Ringberg, Germany, 10–14 November, 1996, edited by Aldinger, F. and Bill, J. (Wiley-VCH Verlagsgesellschaft mbH, in press).Google Scholar
28.Collins, R.J., Shin, H., De Guire, M.R., Heuer, A.H., and Sukenik, C., Appl. Phys. Lett. 69, 860 (1996).CrossRefGoogle Scholar
29.Feng, S. and Bein, T., Nature 368, 834 (1994).CrossRefGoogle Scholar
30.Feng, S. and Bein, T., Science 265, 1839 (1994).CrossRefGoogle Scholar
31.Tarasevich, B.J., Rieke, P.C., and Liu, J., Chem. Mater. 8, 292 (1996).CrossRefGoogle Scholar
32.Niesen, T.P., De Guire, M.R., Bill, J., Aldinger, F., Rühle, M., Fischer, A., Jentoft, F.C., and Schlögl, R., J. Mater. Res. 14, 2464 (1999).CrossRefGoogle Scholar
33.Agarwal, M., De Guire, M.R., and Heuer, A.H., Appl. Phys. Lett. 71, 891 (1997).CrossRefGoogle Scholar
34.Shi, J.L. and Gao, J.H., J. Mater Sci. 30, 793 (1995).CrossRefGoogle Scholar
35.Gorer, S. and Hodes, G., J. Phys. Chem. 98, 5338 (1994).CrossRefGoogle Scholar
36.Meldrum, F.C., Flath, J., and Knoll, W., Langmuir 13, 2033 (1997).CrossRefGoogle Scholar
37.Rieke, P.C. and Bentjen, S.B., Chem. Mater. 5, 43 (1993).CrossRefGoogle Scholar
38.Gorer, S., Albu-Yaron, A., and Hodes, G., Chem. Mater. 7, 1243 (1995).CrossRefGoogle Scholar
39.Matijevic, E., Acc. Chem. Res. 14, 22 (1981).CrossRefGoogle Scholar
40.Shin, H., Agarwal, M., De Guire, M.R., and Heuer, A.H., Acta Mater. 46, 801 (1998).CrossRefGoogle Scholar
41.Fischer, A., Jentoft, F.C., and Schlögl, R. (unpublished).Google Scholar
42.Connor, P.A., Dobson, K.D., and Mcquillan, A.J., Langmuir 11, 4193 (1995).CrossRefGoogle Scholar