Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T01:18:29.907Z Has data issue: false hasContentIssue false

Characterization of InGaAsP materials by ultrahigh intensity post-ionization mass spectrometry: Relative sensitivity factors for zinc versus bulk constituents

Published online by Cambridge University Press:  31 January 2011

M. L. Wise
Affiliation:
AT/T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-2070
S. W. Downey
Affiliation:
AT/T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-2070
A. B. Emerson
Affiliation:
AT/T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974-2070
Get access

Abstract

The first relative sensitivity factors (RSF) for detecting the major and dopant elements of optical materials by ultrahigh intensity post-ionization (UHIPI) mass spectrometry are determined. The post-ionization is performed using a single laser wavelength with intensities greater than 1014 W/cm2. Zn-implanted InP and In0.4Ga0.1As0.3P0.2 are used to investigate the photoionization of sputtered atoms and molecules. Under optimal conditions, the UHIPI RSF's for atomic singly charged In, Ga, and Zn are nearly equal; that is, the ratio of UHIPI signals is equal to the concentration ratio. In principle, no standards are needed for quantitative analysis. Arsenic and P, with higher ionization potentials, are not detected as efficiently as other elements. The detected mass balance is usually group III rich. An entire mass spectrum is necessary for complete characterization of all elements and adjustment of their RSF's because many sputtered molecules are detected containing the group V elements. Multiply charged species compose about 10% of the detected ions.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Downey, S. W., Emerson, A.B., Kopf, R. F., and Kuo, J. M., Surf. Interface Anal. 15, 781 (1990).CrossRefGoogle Scholar
2.Downey, S. W. and Emerson, A.B., Anal. Chem. 63, 916 (1991).CrossRefGoogle Scholar
3.Keldysh, L. V., Sov. Phys. JETP 20, 1307 (1965).Google Scholar
4.Becker, C. H. and Hovis, J.S., J. Vac. Sci. Technol. A 12, 2352 (1994).CrossRefGoogle Scholar
5.Baldwin, K. G. H. and Boreham, B.W., J. Appl. Phys. 52, 2627 (1981).CrossRefGoogle Scholar
6.Freeman, R. R. and Bucksbaum, P.H., J. Phys. B 24, 325 (1991).CrossRefGoogle Scholar
7.Dyer, M.J., Jusinski, L.E., Helm, H., and Becker, C. H., Appl. Surf. Sci. 52, 151 (1991).CrossRefGoogle Scholar
8.Downey, S. W. and Hozack, R.S., J. Vac. Sci. Technol. A 8, 791 (1990).CrossRefGoogle Scholar
9.Wise, M.L., Downey, S. W., and Emerson, A. B., Anal. Chem. 67, 4033 (1995).CrossRefGoogle Scholar
10.Schubert, E. F., Downey, S. W., Pinzone, C., and Emerson, A. B., Appl. Phys. A 60, 525 (1995).CrossRefGoogle Scholar
11.Corkum, P. B., Burnett, N. H., and Brunel, F., Phys. Rev. Lett. 62, 1259 (1989).CrossRefGoogle Scholar
12.Dietrich, P. and Corkum, P.B., J. Chem. Phys. 97, 3187 (1992).CrossRefGoogle Scholar
13.Kaesdorf, S., Hartmann, M., Schröder, H., and Kompa, K. L., Int. J. Mass Spectrom. Ion Proc. 116, 219 (1992).CrossRefGoogle Scholar
14.Wilson, R. G., Stevie, F.A., and Magee, C. W., Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis (John Wiley, New York, 1989).Google Scholar