Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T02:35:29.220Z Has data issue: false hasContentIssue false

Characteristics of hafnium oxide grown on silicon by atomic-layer deposition using tetrakis(ethylmethylamino)hafnium and water vapor as precursors

Published online by Cambridge University Press:  31 January 2011

Yan-Kai Chiou
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Che-Hao Chang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Tai-Bor Wu*
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
*
a)Address all correspondence to this author. e-mail: tbwu@mx.nthu.edu.tw
Get access

Abstract

The growth of HfO2 thin films on a HF-dipped p-Si(100) substrate at 200 °C by atomic-layer deposition (ALD) using Hf[N(C2H5)(CH3)]4 and H2O vapor as precursors is demonstrated. Uniform HfO2 thin films are obtained on a 4-in. silicon wafer, and the energy-band gap and band offset are determined by x-ray photoelectron spectroscopy analysis. The as-deposited HfO2 thin film is amorphous and able to crystallize at 500 ∼ 600 °C with only the monoclinic phase. As for the electrical performance of Au–Ti–HfO2–Si metal oxide semiconductor capacitors, a dielectric constant of ∼17.8 and an equivalent oxide thickness value of ∼1.39 nm are obtained from the 40-cycle ALD film after annealing at 500 °C. In addition, the breakdown field is in the range of 5 ∼ 5.5 MV/cm, and the fixed charge density is on the order of 1012 cm−2, depending on the annealing temperatures. The interface quality of HfO2 thin films on silicon is satisfactory with an interface-trap charge density of ∼3.7 × 1011 cm−2 eV−1.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cheng, B., Cao, M., Rao, R., Inani, A., Vande Voorde, P., Greene, W.M., Stork, J.M.C, Yu, Z., Zeitzoff, P.M. Woo, J.C.S.: The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs. IEEE Trans. Electron Devices 46(7), 1537 1999CrossRefGoogle Scholar
2McKee, R.A., Walker, F.J. Chisholm, M.F.: Crystalline oxides on silicon: The first five monolayers. Phys. Rev. Lett. 81, 3014 1998CrossRefGoogle Scholar
3Eisenbeiser, K., Finder, J.M., Yu, Z., Ramdani, J., Curless, J.A., Hallmark, A.A., Droopad, R., Ooms, W.J., Slame, L., Bradshaw, S. Overgaard, C.D.: Field effect transistors with SrTiO3 gate dielectric on Si. Appl. Phys. Lett. 76, 1324 2000CrossRefGoogle Scholar
4Kang, L., Onishi, K., Jeon, Y., Lee, B.H., Kang, C., Qi, W.-J., Nieh, R., Gopalan, S., Choi, R. Lee, J.C.: MOSFET devices with polysilicon on single-layer HfO2 high-K dielectrics. Tech. Dig. Int. Electron Devices Meet. 35, 2000Google Scholar
5Choi, K.J., Park, J.B. Yoon, S.G.: Control of the interfacial layer thickness in hafnium oxide gate dielectric grown by PECVD. J. Electrochem. Soc. 150(4), F75 2005Google Scholar
6Wilk, G.D., Wallace, R.M. Anthony, J.M.: High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 2001CrossRefGoogle Scholar
7Schaeffer, J., Edwards, N.V., Liu, R., Roan, D., Hradsky, A.B., Gregory, R., Kulik, J., Duda, E., Contreras, L., Christiansen, J., Zollner, S., Tobin, P., Nguyen, B-Y., Nieh, A.R., Ramon, A.M., Rao, R., Hegde, R., Rai, R., Baker, J. Voight, S.: HfO2 gate dielectrics deposited via tetrakis diethylamido hafnium. J. Electrochem. Soc. 150(4), F67 2003CrossRefGoogle Scholar
8Suntola, T. Antson, J.: Method for producing compound thin films. U.S. Patent No. 4058430, Nov. 15, 1977Google Scholar
9Aarik, J., Aidla, A., Kikas, A., Käämbre, T., Rammula, R., Ritslaid, P., Uustare, T. Sammelselg, V.: Effects of precursors on nucleation in atomic layer deposition of HfO2. Appl. Surf. Sci. 230, 292 2004CrossRefGoogle Scholar
10Forsgren, K., Hårsta, A., Aarik, J., Aidla, A., Westlinder, J. Olsson, J.: Deposition of HfO2 thin films in HfI4-based processes. J. Electrochem. Soc. 149, F139 2002CrossRefGoogle Scholar
11Chang, H.S., Baek, S-K., Park, H., Hwang, H., Oh, J.H., Shin, W.S., Yeo, J.H., Hwang, K.H., Nam, S.W., Lee, H.D., Song, C.L., Moon, D.W. Cho, M-H.: Electrical and physical properties of HfO2 deposited via ALD using Hf(OtBu)4 and ozone atop Al2O3. Electrochem. Solid-State Lett. 7(6), F42 2004CrossRefGoogle Scholar
12Cho, W., An, K-S., Chung, T-M., Kim, C.G., So, B-S., You, Y-H., Hwang, J-H., Jung, D. Kim, Y.: ALD of hafnium dioxide thin films using the new alkoxide precursor hafnium 3-methyl-3-pentoxide, Hf(mp)4. Chem. Vap. Deposition 12, 665 2006CrossRefGoogle Scholar
13Choi, S., Koo, J., Jeon, H. Kim, Y.: Plasma-enhanced atomic-layer deposition of a HfO2 gate dielectric. J. Korean Phys. Soc. 44, 35 2004Google Scholar
14Cho, M., Jeong, D.S., Park, J., Park, H.B., Lee, S.W., Park, T.J., Hwang, C.S., Jang, G.H. Jeong, J.: Comparison between atomic-layer-deposited HfO2 films using O3 or H2O oxidant and Hf[N(CH3)2]4 precursor. Appl. Phys. Lett. 85, 5953 2004CrossRefGoogle Scholar
15Liu, X., Ramanathan, S., Longdergan, A., Srivastava, A., Lee, E., Seidel, T.E., Barton, J.T., Pang, D. Gordon, R.G.: ALD of hafnium oxide thin films from tetrakis(ethylmethylamino)hafnium and ozone. J. Electrochem. Soc. 152, G213 2005CrossRefGoogle Scholar
16Kim, Y., Koo, J., Han, J., Choi, S., Jeon, H. Park, C.: Characteristics of ZrO2 gate dielectric deposited using Zr t–butoxide and Zr(NEt2)4 precursors by plasma enhanced atomic layer deposition method. J. Appl. Phys. 92, 5443 2002CrossRefGoogle Scholar
17Huang, M.L., Chang, Y.C., Chang, C.H., Lee, Y.J., Chang, P., Kwo, J., Wu, T.B. Hong, M.: Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3. Appl. Phys. Lett. 87, 252104 2005CrossRefGoogle Scholar
18Robertson, J. Peacock, P.W.: Electronic structure and band offsets of high-dielectric constant gate oxides, in High-k Gate Dielectrics edited by Michel Houssa Institute of Physics Publishing, Beijing 2004 P372–P396Google Scholar
19Huang, M.L., Chang, Y.C., Chang, C.H., Lin, T.D., Kwo, J., Wu, T.B., Hong, M.: Energy-band parameters of atomic-layer-deposition Al2O3/InGaAs heterostructure. Appl. Phys. Lett. 89, 012903 2006CrossRefGoogle Scholar
20Itokawa, H., Maruyama, T., Miyazaki, S. Hirose, M.: Determination of bandgap and energy band alignment for high-dielectric-constant gate insulators using high-resolution x-ray photoelectron spectroscopy, in Int. Conf. on Solid State Devices and Materials, Tokyo Japan Society of Applied Physics, Japan 1999 158Google Scholar
21Peacock, P.W. Robertson, J.: Band offsets and Schottky barrier heights of high-dielectric constant oxides. J. Appl. Phys. 92, 4712 2002CrossRefGoogle Scholar
22Sayan, S., Grafunkel, E. Suzer, S.: Soft x-ray photoemission studies of the HfO2/SiO2/Si system. Appl. Phys. Lett. 80, 2135 2002CrossRefGoogle Scholar
23Puthenkovilakam, R. Chang, J.P.: An accurate determination of barrier heights at the HfO2/Si interfaces. J. Appl. Phys. 96, 2701 2004CrossRefGoogle Scholar
24Kukli, K., Ritala, M., Sajavaara, T., Keinonen, J. Leskela, M.: Comparison of hafnium oxide films grown by atomic layer deposition from iodide and chloride precursors. Thin Solid Films 416, 72 2002CrossRefGoogle Scholar
25Kukli, K., Ritala, M., Lu, J., Ha°rsta, A. Leskela, M.: Properties of HfO2 thin films grown by ALD from hafnium tetrakisethylmethylamide and water. J. Electrochem. Soc. 151, F189 2004CrossRefGoogle Scholar
26Hauser, J.R. Ahmed, K.: Characterization of ultrathin oxides using electrical C–V and I–V measurements, in Characterization and Metrology for ULSI Technology 1998 235Google Scholar
27Houssa, M., Afanas’ev, V.V., Stesmans, A. Heyns, M.M.: Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation. Appl. Phys. Lett. 77, 1885 2000CrossRefGoogle Scholar
28Besling, W.F.A., Young, E., Conard, T., Zhao, C., Carter, R., Vandervorst, W., Caymax, M., De Gendt, S., Heyns, M., Maes, J., Tuominen, M. Haukka, S.: Characterisation of ALCVD Al2O3–ZrO2 nanolaminates, link between electrical and structural properties. J. Non-Cryst. Solids 303, 123 2002CrossRefGoogle Scholar
29Frank, M.M., Chabal, Y.J. Wilk, G.D.: Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides. Appl. Phys. Lett. 82, 4758 2003CrossRefGoogle Scholar
30Nicollian, E.H. Goetzberger, A.: The Si-SiO2 interface electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Tech. J. 46, 1055 1967CrossRefGoogle Scholar
31Nicollian, E.H. Brews, J.R.: MOS Physics and Technology Wiley, New York 1981Google Scholar
32Ma, T.P. Barker, R.C.: Surface-state spectra from thick-oxide MOS tunnel junctions. Solid-State Electron. 17, 913 1974CrossRefGoogle Scholar
33Kar, S. Dahlke, W.E.: Interface states in MOS structures with 20-40 Å thick SiO2 films on nondegenerate Si. Solid-State Electron. 15, 221 1972CrossRefGoogle Scholar
34Vogel, E.M., Henson, W. Kirklen, Richter, C.A. Suehle, J.S.: Limitations of conductance to the measurement of the interface state density of MOS capacitors with tunneling gate dielectrics. IEEE Trans. Electron Devices 47(3), 601 2000CrossRefGoogle Scholar
35Chiou, Y-K., Chang, C-H., Wang, C-C., Lee, K-Y., Wu, T-B., Kwo, R. Hong, M.: Effect of Al incorporation in the thermal stability of atomic-layer-deposited HfO2 for gate dielectric applications. J. Electrochem. Soc. 154, G99 2007CrossRefGoogle Scholar