Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T01:28:37.077Z Has data issue: false hasContentIssue false

Casting Fe–Al-based intermetallics alloyed with Li and Ag

Published online by Cambridge University Press:  13 July 2016

M. Villagomez-Galindo
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000, Morelia, México; and Department of Mechanical Engineering (EUETIB), Universitat Politécnica de Catalunya, 08034 Barcelona, Spain
G. Carbajal-De la Torre
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000, Morelia, México
J.C. Romo-Castañeda
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, C.P. 04510 Ciudad de México, D.F., México
A. Bedolla-Jacuinde
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000, Morelia, México
H.A. González-Rojas
Affiliation:
Department of Mechanical Engineering (EUETIB), DEFAM Group, Universitat Politécnica de Catalunya, 08034 Barcelona, Spain
M.A. Espinosa-Medina*
Affiliation:
Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, C.P. 58000, Morelia, México
*
a)Address all correspondence to this author. e-mail: marespmed@gmail.com
Get access

Abstract

The effect on the mechanical properties at room temperature of Li and Ag additions to the Fe–Al (40 at.%)-based alloy produced by conventional casting were evaluated in this work. Alloying elements were added into a previously molted Fe–(40 at.%) aluminum-based alloy, stirred, and then cast into sand molds to directly produce tensile specimens. To determine the mechanical properties, tensile tests and hardness measurements were performed. The additions of both Ag and Li showed an increase in ductility and tensile strength of the intermetallic alloys. In addition, hardness was substantially increased with the Li addition. Lithium additions promoted a solid solution hardening, whereas 3 at.% of Ag additions promoted ductility due to a microstructural modification and to the formation of a soft Ag3Al phase. Characterization by both optical and electronic microscopy, energy dispersive spectroscopy microanalysis, and x-ray diffraction supported the mechanical characterization.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Charlot, F., Gaffet, E., Zeghmati, B., Bernard, F., and Niepce, J.C.: Mechanically activated synthesis studied by x-ray diffraction in the Fe–Al system. Mater. Sci. Eng., A 262, 279 (1999).Google Scholar
Kupka, M.: Technological plasticity studies of the FeAl intermetallic phase-based alloy. Intermetallics 12, 295 (2004).Google Scholar
Zhang, W.J., Sundar, R.S., and Deevi, S.C.: Improvement of the creep resistance of FeAl-based alloys. Intermetallics 12, 893 (2004).CrossRefGoogle Scholar
Eumann, M., Palm, M., and Sauthoff, G.: Alloys based on Fe3Al or FeAl with strengthening Mo3Al precipitates. Intermetallics 12, 625 (2004).Google Scholar
Mekhrabov, A.O. and Akdeniz, M.V.: Effect of ternary alloying elements addition on atomic ordering characteristics of Fe–Al intermetallics. Acta Mater. 47, 2067 (1999).CrossRefGoogle Scholar
Baker, I. and Munroe, P.R.: Mechanical properties of FeAl. Int. Mater. Rev. 42, 181 (1997).CrossRefGoogle Scholar
Liu, C.T., George, E.P., Maziasz, P.J., and Schneibel, J.H.: Recent advances in B2 iron aluminide alloys: Deformation, fracture and alloy design. Mater. Sci. Eng., A 258, 84 (1998).Google Scholar
Stoloff, N.S. and Liu, C.T.: Environmental embrittlement of iron aluminides. Intermetallics 2, 75 (1994).CrossRefGoogle Scholar
Baker, I., Klein, O., Nelson, C., and George, E.P.: Effects of boron and grain-size on the strain-rate sensitivity of Fe–45Al. Scr. Metall. Mater. 30, 863 (1994).Google Scholar
Morris, D.G., Munoz-Morris, M.A., and Requejo, L.M.: Work hardening in Fe–Al alloys. Mater. Sci. Eng., A 460–461, 163 (2007).Google Scholar
Kupka, M.: Temperature dependence of the yield stress of an FeAl base alloy. Mater. Sci. Eng., A 336, 320 (2002).Google Scholar
Pang, L. and Kumar, K.S.: Mechanical behavior of an Fe–40Al–0.6C alloy. Acta Mater. 46, 4017 (1998).CrossRefGoogle Scholar
Deevi, S.C. and Sikka, V.K.: Nickel and iron aluminides: An overview on properties, processing, and applications. Intermetallics 4(5), 357 (1996).Google Scholar
Deevi, S.C. and Sikka, V.K.: Exo-MeltTM process for melting and casting intermetallics. Intermetallics 5(1), 17 (1997).Google Scholar
Sikka, V.K., Wilkening, D., Liebetrau, J., and Mackey, B.: Melting and casting of FeAl-based cast alloy. Mater. Sci. Eng., A 258, 229 (1998).Google Scholar
Mistler, R.E., Sikka, V.K., Scorey, C.R., McKernan, J.E., and Hajaligol, M.R.: Tape casting as a fabrication process for iron aluminide FeAl thin sheets. Mater. Sci. Eng., A 258, 258 (1998).Google Scholar
Hajaligol, M.R., Deevi, S.C., Sikka, V.K., and Scorey, C.R.: A thermomechanical process to make iron aluminide FeAl sheet. Mater. Sci. Eng., A 258, 249 (1998).Google Scholar
Martinez, L., Amaya, M., Porcayo-Calderon, J., and Lavernia, E.J.: High-temperature electrochemical testing of spray atomized and deposited iron aluminides alloyed with boron and reinforced with alumina particulate. Mater. Sci. Eng., A 258, 306 (1998).CrossRefGoogle Scholar
Hamana, D., Amiour, L., and Bouchear, M.: Effect of chromium ternary additions on the ordering behaviour in Fe–28 at.% Al alloy. Mater. Chem. Phys. 112, 816 (2008).Google Scholar
Schneibel, J.H.: Strengthening of iron aluminides by vacancies and/or nickel. Mater. Sci. Eng., A 258, 181 (1998).Google Scholar
Rosas, G., Esparza, R., Bedolla-Jacuinde, A., and Perez, R.: Room temperature mechanical properties of Fe3Al intermetallic alloys with Li and Ni additions. J. Mater. Eng. Perform. 9, 57 (2009).CrossRefGoogle Scholar
Huang, Y.D. and Froyen, L.: On the effect of microstructural parameters on tensile properties of a high work-hardening Fe3Al-based alloy. Intermetallics 11, 361 (2003).Google Scholar
Wasilkowska, A., Bartsch, M., Stein, F., Palm, M., Sauthoff, G., and Messerschmidt, U.: Plastic deformation of Fe–Al polycrystals strengthened with Zr-containing laves phases—Part II. Mechanical properties. Mater. Sci. Eng., A 381, 1 (2004).CrossRefGoogle Scholar
Cieslar, M., Karlık, M., Benko, M., and Cernoch, T.: The influence of Cr and Ce additions on the mechanical properties of Fe3Al based alloys. Mater. Sci. Eng., A 324, 23 (2002).Google Scholar
Salazar, M., Albiter, A., Rosas, G., and Perez, R.: Structural and mechanical properties of the AlFe intermetallic alloy with Li, Ce and Ni additions. Mater. Sci. Eng., A 351, 154 (2003).Google Scholar
Pike, L.M. and Liu, C.T.: The effect of vacancies on the environmental yield strength dependence of boron-free and boron-doped Fe–40Al. Intermetallics 8, 1413 (2000).Google Scholar
Hausild, P., Karlik, M., Siegl, J., and Nedbal, I.: Fractographic analysis of the crack growth in the Fe3Al based intermetallic alloy. Intermetallics 13, 217 (2005).CrossRefGoogle Scholar
Chao, J., Morris, D.G., Muñoz-Morris, M.A., and Gonzalez-Carrasco, J.L.: The influence of some microstructural and test parameters on the tensile behaviour and the ductility of a mechanically-alloyed Fe–40Al alloy. Intermetallics 9, 299 (2001).Google Scholar
Wu, D. and Baker, I.: The effect of environment and strain rate on the room temperature tensile properties of FeAl single crystals. Intermetallics 9, 57 (2001).Google Scholar
Romo Castañeda, J.C.: Thesis: Characterization of a FeAl (Facultad de Química, Universidad Nacional Autónoma de México, México City, 2006).Google Scholar
ASTM Designation: E 8M: Standard Test Methods for Tension Testing of Metallic Materials [Metric] (2001).Google Scholar
ASTM Designation: E3: Standard Guide for Preparation of Metallographic Specimens (2001).Google Scholar
ASTM Designation: E 407: Standard practice for Microetching metals and alloys (1999).Google Scholar
Yang, Y., Masaaki, H., Masao, Y., and Ryoji, K.: Synthesis, crystal structure, and electrode characteristics of LiMnPO4(OH) cathode for lithium batteries. J. Solid State Chem. 187, 124 (2012).CrossRefGoogle Scholar
Baligidad, R.G. and Radhakrishna, A.: Effect of carbon and processing on structure and mechanical properties of Fe-11 wt.% Al alloy. Mater. Sci. Eng., A 283, 211 (2000).Google Scholar
Amils, X., Nogues, J., Suriñach, S., Baro, M.D., Muñoz-Morris, M.A., and Morris, D.G.: Hardening and softening of FeAl during milling and annealing. Intermetallics 8, 805 (2000).CrossRefGoogle Scholar