Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T00:22:27.681Z Has data issue: false hasContentIssue false

Atomistic tight-binding theory of structural and optical properties in PbX (X = S, Se, and Te) nanocrystals

Published online by Cambridge University Press:  05 March 2020

Worasak Sukkabot*
Affiliation:
Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
*
a)Address all correspondence to this author. e-mail: w.sukkabot@gmail.com
Get access

Abstract

The computational tool integrating empirical tight binding and full configuration interaction method is utilized to study the structural and optical properties of spherical PbX (X = S, Se, and Te) nanocrystals under various diameters. The nanocrystal architecture plays an essential role in the control of the structural and optical properties. The appearance of the quantum confinement is caused by the reduction of the optical band gaps with the increasing diameters. By changing the chalcogenide types and diameters, the band gaps are modified, with their wavelengths from 380 to 2500 nm, technologically applying for the visible and near-infrared optical devices. The tight-binding band gaps agree well with previously published theoretical and experimental values. The atomistic electron–hole interactions are mainly influenced by the diameters and chalcogenide types. Using the Stokes shift and fine structure splitting, PbS nanocrystal with the immense size may be implemented as a source of entangled photon pairs and optical filter. Finally, the theoretical study reveals the distinctive properties of PbX (X = S, Se, and Te) nanocrystals by changing their architecture for applications in optoelectronic devices and microscopy.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rogach, A.L., Eychmüller, A., Hickey, S.G., and Kershaw, S.V.: Infrared‐emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 3, 536 (2007).CrossRefGoogle ScholarPubMed
Mozafari, M., Moztarzadeh, F., Seifalian, A., and Tayebi, L.: Self-assembly of PbS hollow sphere quantum dots via gas-bubble technique for early cancer diagnosis. J. Lumin. 133, 188 (2013).CrossRefGoogle Scholar
Cinteza, L.O.: Quantum dots in biomedical applications: Advances and challenges. J. Nanophotonics 4, 042503 (2010).CrossRefGoogle Scholar
Bhandari, K.P., Roland, P.J., Mahabaduge, H., Haugen, N.O., Grice, C.R., Jeong, S., Dykstra, T., Gao, J., and Ellingson, R.J.: Thin film solar cells based on the heterojunction of colloidal PbS quantum dots with CdS. Sol. Energy Mater. Sol. Cells 117, 476 (2013).CrossRefGoogle Scholar
Emin, S., Singh, S.P., Han, L., Satoh, N., and Islam, A.: Colloidal quantum dot solar cells. Sol. Energy 85, 1264 (2011).CrossRefGoogle Scholar
Jumabekov, A.N., Deschler, F., Bo, D., Peter, L.M., Feldmann, J., and Bein, T.: Quantum-dot-sensitized solar cells with water-soluble and air-stable PbS quantum dots. J. Phys. Chem. C 118, 5142 (2014).CrossRefGoogle Scholar
Ellingson, R.J., Beard, M.C., Johnson, J.C., Yu, P., Micic, O.I., Nozik, A.J., Shabaev, A., and Efros, A.L.: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865 (2005).CrossRefGoogle ScholarPubMed
Schaller, R.D. and Klimov, V.I.: High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).CrossRefGoogle ScholarPubMed
Trinh, M.T., Houtepen, A.J., Schins, J.M., Hanrath, T., Piris, J., Knulst, W., Goossens, A.P.L.M., and Siebbeles, L.D.A.: In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett. 8, 1713 (2008).CrossRefGoogle ScholarPubMed
Beard, M.C., Midgett, A.G., Law, M., Semonin, O.E., Ellingson, R.J., and Nozik, A.J.: Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 9, 836 (2009).CrossRefGoogle ScholarPubMed
Kane, R.S., Cohen, R.E., and Silbey, R.: Theoretical study of the electronic structure of PbS nanoclusters. J. Phys. Chem. 100, 7928 (1996).CrossRefGoogle Scholar
Hines, M.A. and Scholes, G.D.: Colloidal PbS nanocrystals with size‐tunable near‐infrared emission: Observation of post‐synthesis self‐narrowing of the particle size distribution. Adv. Mater. 15, 1844 (2003).CrossRefGoogle Scholar
Litvin, A.P., Parfenov, P.S., Ushakova, E.V., Simões Gamboa, A.L., Fedorov, A.V., and Baranov, A.V.: Size and temperature dependencies of the low-energy electronic structure of PbS quantum dots. J. Phys. Chem. C 118, 20721 (2014).CrossRefGoogle Scholar
Zhang, J., Crisp, R.W., Gao, J., Kroupa, D.M., Beard, M.C., and Luther, J.M.: Synthetic conditions for high-accuracy size control of PbS quantum dots. J. Phys. Chem. Lett. 6, 1830 (2015).CrossRefGoogle ScholarPubMed
Pan, Y., Li, Y.R., Zhao, Y., and Akins, D.L.: Synthesis and characterization of quantum dots: A case study using PbS. J. Chem. Educ. 92, 1860 (2015).CrossRefGoogle Scholar
Kumar, U., Sharma, S.N., Singh, S., Kar, M., Singh, V.N., Mehta, B.R., and Kakkar, R.: Size- and shape-controlled synthesis and properties of colloidal PbSe nanocrystals. Mater. Chem. Phys. 113, 107 (2009).CrossRefGoogle Scholar
Kang, I. and Wise, F.W.: Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 14, 1632 (1997).CrossRefGoogle Scholar
Koole, R., Allan, G., Delerue, C., Meijerink, A., Vanmaekelbergh, D., and Houtepen, A.J.: Optical investigation of quantum confinement in PbSe nanocrystals at different points in the brillouin zone. Small 4, 127 (2008).CrossRefGoogle ScholarPubMed
Leitsmann, R. and Bechstedt, F.: Characteristic energies and shifts in optical spectra of colloidal IV–VI semiconductor nanocrystals. ACS Nano 3, 3505 (2009).CrossRefGoogle ScholarPubMed
Mokari, T., Zhang, M., and Yang, P.: Shape, size, and assembly control of PbTe nanocrystals. J. Am. Chem. Soc. 129, 9864 (2007).CrossRefGoogle ScholarPubMed
Murphy, J.E., Beard, M.C., Norman, A.G., Ahrenkiel, S.P., Johnson, J.C., Yu, P., Mićić, O.I., Ellingson, R.J., and Nozik, A.J.: PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128, 3241 (2006).CrossRefGoogle ScholarPubMed
Zhang, B., He, J., and Tritta, T.M.: Size-selective high-yield growth of lead telluride (PbTe) nanocrystals using a chemical vapor deposition technique. Appl. Phys. Lett. 88, 043119 (2006).CrossRefGoogle Scholar
Korkusinski, M. and Hawrylak, P.: Atomistic theory of emission from dark excitons in self-assembled quantum dots. Phys. Rev. B 87, 115310 (2013).CrossRefGoogle Scholar
Zieliński, M.: Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots. J. Phys.: Condens. Matter 25, 465301 (2013).Google ScholarPubMed
Reboredo, F.A., Franceschetti, A., and Zunger, A.: Dark excitons due to direct Coulomb interactions in silicon quantum dots. Phys. Rev. B 61, 13073 (2000).CrossRefGoogle Scholar
de Oliveira, E.L., Albuquerque, E.L., de Sousa, J.S., Farias, G.A., and Peeters, F.M.: Configuration-interaction excitonic absorption in small Si/Ge and Ge/Si core/shell nanocrystals. J. Phys. Chem. C 116, 4399 (2012).CrossRefGoogle Scholar
Sukkabot, W.: Excitonic fine structure splitting in ZnTe/ZnX (X = S and Se) core/shell nanocrystals: Atomistic tight-binding theory. Superlattices Microstruct. 91, 208 (2016).CrossRefGoogle Scholar
Sukkabot, W.: Atomistic tight-binding computations of excitonic fine structure splitting in CdSe/ZnSe type-I and ZnSe/CdSe invert type-I core/shell nanocrystals. Mater. Sci. Semicond. Process. 47, 57 (2016).CrossRefGoogle Scholar
Sukkabot, W.: Atomistic tight-binding computations in structural and optical properties of CdSe/ZnSe/ZnS core/multi-shell nanocrystals. Superlattices Microstruct. 95, 71 (2016).CrossRefGoogle Scholar
Wang, Y., Suna, A., Mahler, W., and Kasowski, R.: PbS in polymers. From molecules to bulk solids. J. Chem. Phys. 87, 7315 (1987).CrossRefGoogle Scholar
Weller, H.: Quantized semiconductor particles: A novel state of matter for materials science. Adv. Mater. 5, 88 (1993).CrossRefGoogle Scholar
An, J.M., Franceschetti, A., and Zunger, A.: The excitonic exchange splitting and radiative lifetime in PbSe quantum dots. Nano Lett. 7, 2129 (2007).CrossRefGoogle Scholar
Liljeroth, P., Zeijlmans van Emmichoven, P.A., Hickey, S.G., Weller, H., Grandidier, B., Allan, G., and Vanmaekelbergh, D.: Density of states measured by scanning-tunneling spectroscopy sheds new light on the optical transitions in PbSe nanocrystals. Phys. Rev. Lett. 95, 086801 (2005).CrossRefGoogle ScholarPubMed
Murray, C.B., Sun, S., Gaschler, W., Doyle, H., Betley, T.A., and Kagan, C.R.: Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47 (2001).CrossRefGoogle Scholar
Gong, K., Zeng, Y., and Kelley, D.F.: Extinction coefficients, oscillator strengths, and radiative lifetimes of CdSe, CdTe, and CdTe/CdSe nanocrystals. J. Phys. Chem. C 117, 20268 (2013).CrossRefGoogle Scholar
Jasieniak, J., Smith, L., van Embden, J., Mulvaney, P., and Califano, M.: Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113, 19468 (2009).CrossRefGoogle Scholar
Sukkabot, W.: Atomistic tight-binding calculations of near infrared emitting CdxHg1−xTe nanocrystals. Comput. Mater. Sci. 138, 166 (2017).CrossRefGoogle Scholar
Butler, J.: Advanced Topics in Forensic DNA Typing: Methodology, 1st ed. (Academic Press, San Diego, CA, 2011).Google Scholar
Benson, O., Santori, C., Pelton, M., and Yamamoto, Y.: Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513 (2000).CrossRefGoogle ScholarPubMed
Califano, M., Franceschetti, A., and Zunger, A.: Lifetime and polarization of the radiative decay of excitons, biexcitons, and trions in CdSe nanocrystal quantum dots. Phys. Rev. B 75, 115401 (2007).CrossRefGoogle Scholar
Fonoberov, V.A. and Balandin, A.A.: Radiative lifetime of excitons in ZnO nanocrystals: The dead-layer effect. Phys. Rev. B 70, 195410 (2004).CrossRefGoogle Scholar
Kigel, A., Brumer, M., Maikov, G., Sashchiuk, A., and Lifshitz, E.: The ground-state exciton lifetime of PbSe nanocrystal quantum dots. Superlattices Microstruct. 46, 272 (2009).CrossRefGoogle Scholar
Zhuravlev, K.K., Pietryga, J.M., Sander, R.K., and Schaller, R.D.: Optical properties of PbSe nanocrystal quantum dots under pressure. Appl. Phys. Lett. 90, 043110 (2007).CrossRefGoogle Scholar
Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).CrossRefGoogle Scholar
Lee, S., Oyafuso, F., von Allmen, P., and Klimeck, G.: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316 (2004).CrossRefGoogle Scholar
Lent, C.S., Bowen, M.A., Dow, J.D., Allgaier, R.S., Sankey, O.F., and Ho, E.S.: Relativistic empirical tight-binding theory of the energy bands of GeTe, SnTe, PbTe, PbSe, PbS, and their alloys. Superlattices Microstruct. 2, 491 (1986).CrossRefGoogle Scholar
Sheng, W., Cheng, S-J., and Hawrylak, P.: Multiband theory of multi-exciton complexes in self-assembled quantum dots. Phys. Rev. B 71, 035316 (2005).CrossRefGoogle Scholar
Lee, S., Jonsson, L., Wilkins, J.W., Bryant, G.W., and Klimeck, G.: Electron–hole correlations in semiconductor quantum dots with tight-binding wave functions. Phys. Rev. B 63, 195318 (2001).CrossRefGoogle Scholar
Franceschetti, A., Fu, H., Wang, L.W., and Zunger, A.: Many-body pseudopotential theory of excitons in InP and CdSe quantum dots. Phys. Rev. B 60, 1819 (1999).CrossRefGoogle Scholar