Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T01:14:06.977Z Has data issue: false hasContentIssue false

Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation

Published online by Cambridge University Press:  03 March 2011

Christopher A. Schuh
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Alan C. Lund
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

We propose a nucleation theory-based analysis for incipient plasticity during nanoindentation and predict the statistical distribution of rate-dependent pop-in events for many nominally identical indentations on the same surface. In the framework of stress-assisted, thermally activated defect nucleation, we quantitatively rationalize new nanoindentation measurements on 4H SiC and extract the activation volume of the nucleation events that mark the onset of plastic flow. We also illustrate how this statistical approach can differentiate between unique nucleation events for different indenter tip geometries.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P. and Wyrobek, J.T.: Indentation Induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).CrossRefGoogle Scholar
2.Kramer, D.E., Yoder, K.B. and Gerberich, W.W.: Surface constrained plasticity: Oxide Rupture and the yield point process. Philos. Mag. A81, 2033 (2001).CrossRefGoogle Scholar
3.Gerberich, W.W., Venkataraman, S.K., Huang, H., Harvey, S.E. and Kohlstedt, D.L.: The injection of plasticity by millinewton contacts. Acta Metall. Mater. 43, 1569 (1995).CrossRefGoogle Scholar
4.Field, J.S., Swain, M.V. and Dukino, R.D.: Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in. J. Mater. Res. 18, 1412 (2003).CrossRefGoogle Scholar
5.Wright, W.J., Saha, R. and Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. JIM. 42, 642 (2001).CrossRefGoogle Scholar
6.Greer, A.L., Castellero, A., Madge, S.V., Walker, I.T. and Wilde, J.R. Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng. A (2004, in press).Google Scholar
7.Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).CrossRefGoogle Scholar
8.Schuh, C.A. and Nieh, T.G.: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 46 (2004).CrossRefGoogle Scholar
9.Chinh, N.Q., Horváth, G., Kovács, Z. and Lendvai, J.: Characterization of plastic instability steps occurring in depth-sensing indentation tests. Mater. Sci. Eng A 324, 219 (2002).CrossRefGoogle Scholar
10.Berces, G., Chinh, N.Q., Juhasz, A. and Lendvai, J.: Occurrence of plastic instabilities in dynamic microhardness testing. J. Mater. Res. 13, 1411 (1998).CrossRefGoogle Scholar
11.Corcoran, S.G., Colton, R.J., Lilleodden, E.T. and Gerberich, W.W.: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057 (1997).CrossRefGoogle Scholar
12.Pang, M., Bahr, D.F. and Lynn, K.G.: Effects of Zn addition and thermal annealing on yield phenomena of CdTe and Cd0.96Zn0.04Te single crystals by nanoindentation. Appl. Phys. Lett. 82, 1200 (2003).CrossRefGoogle Scholar
13.Chiu, Y.L. and Ngan, A.H.W.: A TEM investigation on indentation plastic zones in Ni3Al(Cr,B) single crystals. Acta Mater. 50, 2677 (2002).CrossRefGoogle Scholar
14.Gouldstone, A., Koh, H-J., Zeng, K-Y., Giannakopoulos, A.E. and Suresh, S.: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).CrossRefGoogle Scholar
15.Suresh, S., Nieh, T.G. and Choi, B.W.: Nano-indentation of copper thin films on silicon substrates. Scripta Mater. 41, 951 (1999).CrossRefGoogle Scholar
16.Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H. and Leipner, H.S.: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67, 172101 (2003).CrossRefGoogle Scholar
17.Kelchner, C.L., Plimpton, S.J. and Hamilton, J.C.: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).CrossRefGoogle Scholar
18.Gannepalli, A. and Mallapragada, S.K.: Atomistic studies of defect nucleation during nanoindentation of Au(001). Phys. Rev. B 66, 104103 (2002).CrossRefGoogle Scholar
19.Knap, J. and Ortiz, M.: Effect of indenter-radius size on Au(001) nanoindentation. Phys. Rev. Lett. 90, 226102 (2003).CrossRefGoogle ScholarPubMed
20.Lilleodden, E.T., Zimmerman, J.A., Foiles, S.M. and Nix, W.D.: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901 (2003).CrossRefGoogle Scholar
21.Li, J., Van-Vliet, K.J., Zhu, T., Yip, S. and Suresh, S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307 (2002).CrossRefGoogle ScholarPubMed
22.Bahr, D.F., Wilson, D.E. and Crowson, D.A.: Energy considerations regarding yield points during indentation. J. Mater. Res. 14, 2269 (1999).CrossRefGoogle Scholar
23.Chiu, Y.L. and Ngan, A.H.W.: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).CrossRefGoogle Scholar
24.Syed-Asif, S.A. and Pethica, J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A76, 1105 (1997).CrossRefGoogle Scholar
25.Wang, W., Jiang, C.B. and Lu, K.: Deformation behavior of Ni3Al single crystals during nanoindentation. Acta Mater. 51, 6169 (2003).CrossRefGoogle Scholar
26.Michalske, T.A. and Houston, J.E.: Dislocation nucleation at nano-scale contacts. Acta Mater. 46, 391 (1998).CrossRefGoogle Scholar
27.Kooi, B.J., Poppen, R.J., Carvalho, N.J.M., DeHosson, J.T.M. and Barsoum, M.W.: Ti3SiC2: A damage tolerant ceramic studied with nanoindentations and transmission electron microscopy. Acta Mater. 51, 2859 (2003).CrossRefGoogle Scholar
28.Lee, K.S., Park, J.Y., Kim, W-J., Lee, M.Y., Jung, C.H. and Hong, G.W.: Effect of soft substrate on the indentation damage in silicon carbide deposited on graphite. J. Mater. Sci. 35, 2769 (2000).CrossRefGoogle Scholar
29.Page, T.F., Oliver, W.C. and McHargue, C.J.: The deformation behavior of ceramic crystals subjected to very low load (nano)indentations. J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
30.Pohlmann, K., Bhushan, B. and Gahr, K-H.Z.: Effect of thermal oxidation on indentation and scratching of single-crystal silicon carbide on microscale. Wear 237, 116 (2000).CrossRefGoogle Scholar
31.Woirgard, J., Cabioc’h, T., Riviere, J.P. and Dargenton, J.C.: Nanoindentation characterization of SiC coatings prepared by dynamic ion mixing. Surf. Coat. Technol. 100, 128 (1998).CrossRefGoogle Scholar
32.Mann, A.B., Balooch, M., Kinney, J.H. and Weihs, T.P.: Radial variations in modulus and hardness in SCS-6 silicon carbide fibers. J. Am. Ceram. Soc. 82, 111 (1999).CrossRefGoogle Scholar
33.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).CrossRefGoogle Scholar
34.Mann, A.B. and Pethica, J.B.: The effect of tip momentum on the contact stiffness and yielding during nanoindentation testing. Philos. Mag. A 79, 577 (1999).CrossRefGoogle Scholar
35.Mann, A.B. and Pethica, J.B.: The role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69, 907 (1996).CrossRefGoogle Scholar
36.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
37.Green, D.J., An Introduction to the Mechanical Properties of Ceramics (Cambridge University Press, Cambridge, U.K., 1998).CrossRefGoogle Scholar
38.Bahr, D.F., Kramer, D.E. and Gerberich, W.W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).CrossRefGoogle Scholar
39.Tymiak, N.I., Kramer, D.E., Bahr, D.F., Wyrobek, J.T. and Gerberich, W.W.: Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49, 1021 (2001).CrossRefGoogle Scholar
40.Golovin, Y.I., Tyurin, A.I. and Farber, B.Y.: Time-dependent characteristics of materials and micromechanisms of plastic deformation on a submicron scale by a new pulse indentation technique. Philos. Mag. A82, 1857 (2002).Google Scholar
41.Farber, B.Y., Orlov, V.I. and Heuer, A.H.: Energy dissipation during high-temperature displacement-sensitive indentation in cubic zirconia single crystal. Phys. Status Solidi A 166, 115 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
42.Golovin, Y.I., Tyurin, A.I. and Farber, B.Y.: Investigation of time-dependent characteristics of materials and micromechanisms of plastic deformation on a submicron scale by a new pulse indentation technique. J. Mater. Sci. 37, 895 (2002).CrossRefGoogle Scholar
43.Farber, B.Y., Orlov, V.I., Nykitenko, V.I. and Heuer, A.H.: Mechanisms of energy dissipation during displacement-sensitive indentation in Ge single crystals at elevated temperatures. Philos. Mag. A 78, 671 (1998).CrossRefGoogle Scholar
44.Kiely, J.D. and Houston, J.E.: Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57, 12588 (1998).CrossRefGoogle Scholar