Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T10:50:57.576Z Has data issue: false hasContentIssue false

An extensive study on carbon nanomaterials electrode from electrophoretic deposition technique for energy storage device

Published online by Cambridge University Press:  28 March 2016

Elyas Talib
Affiliation:
Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
Mohd Asyadi Azam*
Affiliation:
Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia
*
a)Address all correspondence to this author. e-mail: asyadi@utem.edu.my
Get access

Abstract

The development of energy storage device utilizing carbon nanomaterials possesses remarkably significant electrochemical performance. As compared to others, carbon nanomaterials including carbon black, graphene, activated carbon, and carbon nanotube have advantages in ion accessibility and specific surface area in which, more charged ions can access and transfer to the surfaces of material and thus have enhanced electrical charge storage performance. This manuscript briefly reviews the deposition of carbon nanomaterials from electrophoretic deposition technique which is good because of its simple, economical, versatility, and possibility of the thin film deposition on large substrate. The current state-of-the-art and performance of devices employing carbon as electrode material is also extensively discussed.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bonnefoi, L., Simon, P., Fauvarque, J.F., Sarrazin, C., and Dugast, A.: Electrode compositions for carbon power supercapacitors. J. Power Sources 80, 149155 (1999).CrossRefGoogle Scholar
Zheng, J.P.: Ruthenium oxide-carbon composite electrodes for electrochemical capacitors. Electrochem. Solid-State Lett. 2, 359361 (1999).CrossRefGoogle Scholar
Andrieu, X.: Energy Storage Systems for Electronics: New Trends in Electrochemical Technology, Vol. 1 (CRC Press, Boca Raton, 2000); p. 521.Google Scholar
Conway, B.E.: Transition from supercapacitor to battery behavior in electrochemical energy storage. J. Electrochem. Soc. 138, 15391548 (1991).CrossRefGoogle Scholar
Azam, M.A., Manaf, N.S.A., Talib, E., and Bistamam, M.S.A.: Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: A review. Ionics 19, 14551476 (2003).CrossRefGoogle Scholar
Sarangapani, S., Tilak, B.V., and Chen, C.P.: Materials for electrochemical capacitors: Theoretical and experimental constraints. J. Electrochem. Soc. 143, 37913799 (1996).CrossRefGoogle Scholar
Jurewicz, K. and Frackowiak, E.: Modified carbon for electrochemical capacitor. Mol. Phys. Rep. 27, 3643 (2000).Google Scholar
Ingram, M.D., Pappin, A.J., Delalande, F., Poupard, D., and Terzulli, G.: Development of electrochemical capacitors incorporating processable polymer gel electrolytes. Electrochim. Acta 39, 1601 (1998).CrossRefGoogle Scholar
Azam, M.A., Fujiwara, A., and Shimoda, T.: Significant capacitance performance of vertically aligned single-walled carbon nanotube supercapacitor by varying potassium hydroxide concentration. Int. J. Electrochem. Sci. 8, 39023911 (2013).CrossRefGoogle Scholar
Tanahashi, I., Yoshida, A., and Nishino, A.: Comparison of the electrochemical properties of electric double-layer capacitors with an aqueous electrolyte and with a nonaqueous electrolyte. Bull. Chem. Soc. Jpn. 63, 36113614 (1990).CrossRefGoogle Scholar
Osaka, T., Liu, X., Nojima, M., and Momma, T.: An electrochemical double-layer capacitor using an activated carbon electrode with gel electrolyte binder. J. Electrochem. Soc. 146, 1724 (1999).CrossRefGoogle Scholar
Lee, J.H., Wee, S.B., Kwon, M.S., Kim, H.H., and Choi, J.M.: Strategic dispersion of carbon black and its application to ink-jet-printed lithium cobalt oxide electrodes for lithium ion batteries. J. Power Sources 196, 64496455 (2011).CrossRefGoogle Scholar
Manaf, N.S.A., Bistamam, M.S.A., and Azam, M.A.: Development of high performance electrochemical capacitor: A systematic review of electrode fabrication technique based on different carbon materials. ECS J. Solid State Sci. Technol. 2, 31013119 (2013).CrossRefGoogle Scholar
Momma, T., Liu, X., Osaka, T., Ushio, Y., and Sawada, Y.: Electrochemical modification of active carbon fiber electrode and its application to electrochemical double layer capacitor. J. Power Sources 60, 249253 (1996).CrossRefGoogle Scholar
Ishikawa, M., Sakamoto, A., Morita, M., Matsuda, Y., and Ishida, K.: Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double-layer capacitors. J. Power Sources 60, 233238 (1996).CrossRefGoogle Scholar
Saliger, R., Fischer, U., Herta, C., and Fricke, J.: High surface area carbon aerogels for supercapacitors. J. Non-Cryst. Solids 225, 8185 (1998).CrossRefGoogle Scholar
Kossyrev, P.: Carbon black supercapacitors employing thin electrodes. J. Power Sources 201, 347352 (2012).CrossRefGoogle Scholar
Markoulidis, F., Lei, C., Figgermeier, E., Duff, D., Khalil, S., and Martorana, B.: High performance supercapacitor electrodes. Mater. Sci. Eng. 40, 012021 (2012).Google Scholar
Beck, F., Dolata, M., Grivei, E., and Probst, N.: Electrochemical supercapacitors based on industrial carbon blacks in aqueous H2SO4. J. Appl. Electrochem. 31, 845853 (2001).CrossRefGoogle Scholar
Frackowiak, E., Jurewicz, K., Szostak, K., Delpeux, S., and Beguin, F.: Nanotubular materials as electrodes for supercapacitors. Fuel Process. Technol. 77–78, 213219 (2002).CrossRefGoogle Scholar
Zhang, L.L., Zhou, R., and Zhao, X.S.: Graphene based materials as supercapacitor electrodes. J. Mater. Chem. 20, 59835992 (2010).CrossRefGoogle Scholar
Shi, H.: Activated carbons and double layer capacitance. Electrochim. Acta 41, 16331639 (1996).CrossRefGoogle Scholar
El-Kady, M.F., Strong, V., Dubin, S., and Kaner, R.B.: Laser scribing of high performance and flexible graphene-based electrochemical capacitor. Science 335, 13261330 (2012).CrossRefGoogle Scholar
Xia, K., Gao, Q., Jiang, J., and Hu, J.: Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46, 17181726 (2008).CrossRefGoogle Scholar
Wei, J., Nagarajan, N., and Zhitomirsky, I.: Manganese oxide films for electrochemical supercapacitors. J. Mater. Process. Technol. 186, 356361 (2007).CrossRefGoogle Scholar
Wei, J. and Zhitomirsky, I.: Electrosynthesis of manganese oxide films. Surf. Eng. 24, 4046 (2008).CrossRefGoogle Scholar
Liu, F-J.: Electrodeposition of manganese dioxide in three dimensional poly (3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)-polyaniline for supercapacitor. J. Power Sources 182, 383388 (2008).CrossRefGoogle Scholar
Zhou, J., Cheiftz, J., Li, R., Wang, F., Zhou, X., Sham, T.K., Sun, X., and Ding, Z.: Tailoring multi-wall carbon nanotubes for smaller nanostructures. Carbon 47, 829838 (2009).CrossRefGoogle Scholar
Subramanian, V., Zhu, H., and Wei, B.: Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun. 8, 827832 (2006).CrossRefGoogle Scholar
Razak, S.I.A., Ahmad, A.L., Zein, S.H.S., and Boccaccini, A.R.: MnO2 filled multiwalled carbon nanotube/polyaniline nanocomposites with enhanced interfacial interaction and electronic properties. Scr. Mater. 61, 592595 (2009).CrossRefGoogle Scholar
Rose, M.F.: Performance characteristics of large surface area chemical double layer capacitors. J. Power Sources 33, 572592 (1988).Google Scholar
Biniak, S., Swiatkowski, A., Pakula, M., and Radovic, L.R.: Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces. Chem. Phys. Carbon 27, 125225 (2001).Google Scholar
Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603619 (1985).CrossRefGoogle Scholar
Salitra, G., Soffer, A., Eliad, L., Cohen, Y., and Aurbach, D.: Carbon electrodes for double-layer capacitors I. Relations between ion and pore dimensions. J. Electrochem. Soc. 147, 24862493 (2000).CrossRefGoogle Scholar
Lin, C., Ritter, J.A., and Popov, B.N.: Correlation of double-layer capacitance with the pore structure of sol–gel derived carbon xerogels. J. Electrochem. Soc. 146, 36393643 (1999).CrossRefGoogle Scholar
Jin, Z., Yan, X., Yu, Y., and Zhao, G.: Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J. Mater. Chem. A 2, 1170611715 (2014).CrossRefGoogle Scholar
Zhang, Y., Li, R., Liu, H., Sun, X., Mérel, P., and Désilets, S.: Integration and characterization of aligned carbon nanotubes on metal/silicon substrates and effects of water. Appl. Surf. Sci. 255, 50035008 (2009).CrossRefGoogle Scholar
Yu, G.Y., Chen, W.X., Zheng, Y.F., Zhao, J., Li, X., and Xu, Z.D.: Synthesis of Ru/carbon nanocomposites by polyol process for electrochemical supercapacitor electrodes. Mater. Lett. 60, 24532456 (2006).CrossRefGoogle Scholar
Xu, B., Wu, F., Chen, S., Zhang, C., Cao, G., and Yang, Y.: Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochim. Acta 52, 45954598 (2007).CrossRefGoogle Scholar
Yan, J., Liu, J., Fan, Z., Wei, T., and Zhang, L.: High-performance supercapacitor electrodes based on highly corrugated graphene sheets. Carbon 50, 21792188 (2012).CrossRefGoogle Scholar
Liu, C., Yu, Z., Neff, D., Zhamu, A., and Jang, B.Z.: Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 84638468 (2010).CrossRefGoogle ScholarPubMed
Taylor, R., Marsh, H., Heintz, E.A., and Rodriguez-Reinoso, F.: Introduction to Carbon Technologies (Universidad de Alicante, Secretarido de Publicaciones, 1997); p. 167.Google Scholar
Donnet, J.B., Bansal, R.C., and Wang, M.J.: Carbon Black Science and Technology, 2nd ed. (Marcel Dekker, New York, 1993); p. 34.Google Scholar
Kinoshita, K.: Carbon: Electrochemical and Physiochemical Properties (Wiley-Interscience, New York, 1988); p. 58.Google Scholar
Taberna, P.L., Simon, P., and Fauvarque, J.F.: Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J. Electrochem. Soc. 150, 292300 (2003).CrossRefGoogle Scholar
Nasibi, M., Rashed, G., and Golozar, M.A.: Micro-nano sized carbon black as an electrode material for electrochemical double layer capacitors. Presented at the ICMMAE, 2012.Google Scholar
Gnanamuthu, R.M. and Lee, C.W.: Electrochemical properties of super P carbon black as an anode active material for lithium-ion batteries. Mater. Chem. Phys. 130, 831834 (2011).CrossRefGoogle Scholar
Azam, M.A., Mohamed, M.A., Shikoh, E., and Fujiwara, A.: Thermal degradation of single-walled carbon nanotubes during alcohol catalytic chemical vapor deposition process. Jpn. J. Appl. Phys. 49, 02BA04 (2010).CrossRefGoogle Scholar
Hu, C.G., Wang, W.L., Wang, S.X., Zhu, W., and Li, Y.: Investigation on electrochemical properties of carbon nanotubes. Diamond Relat. Mater. 12, 12951299 (2003).CrossRefGoogle Scholar
McEnaney, B.: Prace Naukowe Insttutu Chemii i Technologii Nafty i Wegla. Politechniki Wroclawskiej, Konferencje 57, 10, S.11, 2002.Google Scholar
An, K.H., Jeon, K.K., Heo, J.K., Lim, S.C., Bae, D.J., and Lee, Y.H.: High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc. 149, A1058 (2002).CrossRefGoogle Scholar
Lee, Y.H., An, K.H., Lim, S.C., Kim, W.S., Jeong, H.J., Doh, C.H., and Moon, S.I.: Application of carbon nanotubes to energy storage devices. New Diamond Front. Carbon Technol. 12, 209228 (2002).Google Scholar
An, K.H., Kim, W.S., Park, Y.S., Moon, J.M., Bae, D.J., Lim, S.C., Lee, Y.S., and Lee, Y.H.: Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 11, 387392 (2001).3.0.CO;2-G>CrossRefGoogle Scholar
Zhu, M., Weber, C.J., Yang, Y., Konuma, M., Starke, U., Kern, K., and Bittner, A.M.: Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes. Carbon 46, 18291840 (2008).CrossRefGoogle Scholar
Sakamoto, J.S. and Dunn, B.: Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries. J. Electrochem. Soc. 149, 2630 (2002).CrossRefGoogle Scholar
Guittet, M., Aria, A.I., and Gharib, M.: Use of vertically-aligned carbon nanotube array to enhance the performance of electrochemical capacitors. Presented at the 11th IEEE International Conference on Nanotechnology (IEEE, Portland, 2011); pp. 8085.Google Scholar
Azam, M.A., Isomura, K., Fujiwara, A., and Shimoda, T.: Direct growth of vertically aligned single-walled carbon nanotubes on conducting substrate and its electrochemical performance in ionic liquids. Phys. Status Solidi A 209, 22602266 (2012).CrossRefGoogle Scholar
Du, C. and Pan, N.: High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17, 53145318 (2006).CrossRefGoogle Scholar
Du, C., Yeh, J., and Pan, N.: High power density supercapacitors using locally aligned carbon nanotube electrodes. Nanotechnology 16, 350353 (2005).CrossRefGoogle Scholar
Azam, M.A., Talib, E., Mohamad, N., Kasim, M.S., and Rashid, M.W.A.: Mechanical and thermal properties of single-walled carbon nanotube filled epoxidized natural rubber nanocomposite. J. Appl. Sci. 14, 21832188 (2014).CrossRefGoogle Scholar
Mohamed, M.A., Azam, M.A., Shikoh, E., and Fujiwara, A.: Fabrication and characterization of carbon nanotube field-effect transistors using ferromagnetic electrodes with different coercivities. Jpn. J. Appl. Phys. 49(2S), 02BD08 (2010).CrossRefGoogle Scholar
Frackowiak, E., Delpeux, S., Jurewicz, K., Szostak, K., Cazorla-Amoros, D., and Beguin, F.: Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett. 361, 3541 (2002).CrossRefGoogle Scholar
Frackowiak, E. and Beguin, F.: Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39, 937950 (2001).CrossRefGoogle Scholar
Frackowiak, E., Metenier, K., Bertagna, V., and Beguin, F.: Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 77, 24212423 (2000).CrossRefGoogle Scholar
Hu, L.B., Wu, H., and Cui, Y.: Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl. Phys. Lett. 96, 183502 (2010).CrossRefGoogle Scholar
Hu, L.B., Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.F., and Cui, Y.: Highly conductive paper for energy storage devices. Proc. Natl. Acad. Sci. U. S. A. 106, 2149021494 (2009).CrossRefGoogle ScholarPubMed
Affoune, A.M., Prasad, B.L.V., Sato, H., and Enoki, T.: Electrophoretic deposition of nanosized diamond particles. Langmuir 17, 547551 (2001).CrossRefGoogle Scholar
Cao, G.: Growth of oxide nanorod arrays through sol electrophoretic deposition. J. Phys. Chem. B 108, 1992119931 (2004).CrossRefGoogle Scholar
Holgado, M., Garcia-Santamaria, F., Blanco, A., Ibisate, M., Cintas, A., Miguez, H., Serna, S.J., Molpeceres, C., and Requena, J.: Electrophoretic deposition to control artifial opal growth. Langmuir 15, 47014704 (1999).CrossRefGoogle Scholar
Shi, K. and Zhitomirsky, I.: Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors. J. Colloid Interface Sci. 407, 4744781 (2013).CrossRefGoogle ScholarPubMed
Zhitomirsky, I.: Cathodic deposition of ceramic and organoceramic materials: Fundamental aspects. Adv. Colloid Interface Sci. 97, 279317 (2002).CrossRefGoogle ScholarPubMed
Boccaccini, A.R. and Zhitomirsky, I.: Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr. Opin. Solid State Mater. Sci. 6, 251260 (2002).CrossRefGoogle Scholar
Besra, L. and Liu, M.: A review on fundamental and applications of electrophoretic deposition (EPD). Prog. Mater. Sci. 52, 161 (2007).CrossRefGoogle Scholar
Sarkar, P. and Nicholson, P.S.: Electrophoretic deposition (EPD): Mechanism, kinetics, and application to ceramic. J. Am. Ceram. Soc. 79, 18972002 (1996).CrossRefGoogle Scholar
Hamaker, H.C.: The london—van der Waals attraction between spherical particles. Physica 4, 10581072 (1937).CrossRefGoogle Scholar
Zhitomirsky, I. and Petric, A.: Electrophoretic deposition of ceramic materials for fuel cell applications. J. Eur. Ceram. Soc. 20, 20552061 (2000).CrossRefGoogle Scholar
Van der Biest, O.O. and Vandeperre, L.J.: Electrophoretic deposition of materials. Annu. Rev. Mater. Sci. 29, 327352 (1999).CrossRefGoogle Scholar
Fukada, Y., Nagarajan, N., Mekky, W., Bao, Y., Kim, H.S., and Nicholson, P.S.: Electrophoretic deposition-mechanism, myths and materials. J. Mater. Sci. 39, 787801 (2004).CrossRefGoogle Scholar
Bouyer, F. and Foissy, A.: Electrophoretic deposition of silicon carbide. J. Am. Ceram. Soc. 82, 20012010 (1999).CrossRefGoogle Scholar
Grillon, F., Fayeulle, D., and Jeandin, M.: Quantitative image analysis applied to electrophoretic coatings. J. Mater. Sci. Lett. 11, 272275 (1992).CrossRefGoogle Scholar
Conway, B.E.: Electrochemical Supercapacitors: Scientific fundamentals and technological applications (Kluwer Academic/Plenum Publishers, New York, 1999); p. 11.CrossRefGoogle Scholar
Lufrano, F. and Staiti, P.: Mesoporous carbon materials as electrodes for electrochemical supercapacitors. Int. J. Electrochem. Sci. 5, 903916 (2010).CrossRefGoogle Scholar
Conway, B.E., Birss, V., and Wojtowicz, J.: The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66, 114 (1997).CrossRefGoogle Scholar
Qu, D. and Shi, H.: Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99107 (1998).CrossRefGoogle Scholar
Shih, Y.T., Lee, K.Y., and Huang, Y.S.: Electrochemical capacitance characteristics of patterned ruthenium dioxide-carbon nanotube nanocomposites grown onto grapheme. Appl. Surf. Sci. 294, 2935 (2014).CrossRefGoogle Scholar
Fang, H., Zhang, S., Wu, X., Liu, W., Wen, B., Du, Z., and Jiang, T.: Facile fabrication of multiwalled carbon nanotube/α-MnOOH coaxial nanocable films by electrophoretic deposition for supercapacitors. J. Power Sources 235, 95104 (2013).CrossRefGoogle Scholar
Dubal, D.P., Lee, S.H., Kim, J.G., Kim, W.B., and Lokhande, C.D.: Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J. Mater. Chem. 22, 30443052 (2012).CrossRefGoogle Scholar
Chen, C.Y., Chien, T.C., Chan, Y.C., Lin, C.K., and Wang, S.C.: Pseudocapacitive properties of carbon nanotube/manganese oxide electrode deposited by electrophoretic deposition. Diamond Relat. Mater. 18, 482485 (2009).CrossRefGoogle Scholar
Ghasemi, S., Ojani, R., and Ausi, S.: Bipotential deposition of nickel–cobalt hexacyanoferrate nanostructure on graphene coated stainless steel for supercapacitors. Int. J. Hydrogen Energy 39, 1491814926 (2014).CrossRefGoogle Scholar
Porada, S., Borchardt, L., Oschartz, M., Bryjak, M., Achitson, J.S., Keesman, K.J., Kaskel, S., Biesheuvel, P.M., and Presser, V.: Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy Environ. Sci. 6, 37003712 (2013).CrossRefGoogle Scholar
Bao, S.J., He, B.L., Liang, Y.Y., Zhou, W.J., and Li, H.L.: Synthesis and electrochemical characterization of amorphous MnO2 for electrochemical capacitor. Mater. Sci. Eng., A 397, 305309 (2005).CrossRefGoogle Scholar
Feng, G. and Cummings, P.T.: Supercapacitor capacitance exhibits oscillatory behavior as a function of nanopore size. J. Phys. Chem. Lett. 2, 28592864 (2011).CrossRefGoogle Scholar
Moore, J.J., Kang, J.H., and Wen, J.Z.: Fabrication and characterization of single walled nanotube supercapacitor electrodes with uniform pores using electrophoretic deposition. Mater. Chem. Phys. 134, 6873 (2012).CrossRefGoogle Scholar
Gualous, H., Gallay, R., Alcicek, G., Ighil, B.T., and Oukaour, A.: Supercapacitor ageing at constant temperature and constant voltage and thermal shock. Microelectron. Reliab. 50, 17831788 (2010).CrossRefGoogle Scholar
Hahn, M., Kotz, R., Gallay, R., and Siggel, A.: Pressure evolution in propylene carbonate based electrochemical double layer capacitors. Electrochim. Acta 52, 17091712 (2006).CrossRefGoogle Scholar
Hahn, M., Barbieri, O., Gallay, R., and Kotz, R.: A dilatometric study of the voltage limitation of carbonaceous electrodes in aprotic EDLC type electrolytes by charge-induced strain. Carbon 44, 25232533 (2006).CrossRefGoogle Scholar
Kotz, R., Ruch, P.W., and Cericola, D.: Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests. J. Power Sources 195, 923928 (2010).CrossRefGoogle Scholar