Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T00:33:40.188Z Has data issue: false hasContentIssue false

An effect of crystal tilt on the determination of ions displacements in perovskite oxides under BF/HAADF-STEM imaging mode

Published online by Cambridge University Press:  10 October 2016

Y. Liu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang, China
Y.L. Zhu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang, China
Y.L. Tang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang, China
X.L. Ma*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang, China
*
a) Address all correspondence to this author. e-mail: xlma@imr.ac.cn
Get access

Abstract

Effects of crystal tilt on the determination of the relative positions of different ion columns in compounds such as ferroelectric PbTiO3 are of critical importance, because the displacements of Ti and O relative to Pb correlate directly to the spontaneous polarization and ferroelectric properties. Here a study about the effects of small-angle crystal tilt on the relative image spots positions of different ions in PbTiO3 was carried out under high angle angular dark-field (HAADF) and bright-field imaging for aberration corrected Scanning Transmission Electron Microscope. The results indicate that crystal tilt affects the relative positions of Pb, Ti, and O greatly, and the effects are proved to depend highly on crystal tilt angle and PTO thickness. HAADF image simulations on PbTiO3, SrTiO3, and SrRuO3 indicate that the difference in atomic number is a main contributor to the relative image spot position change of different ion columns when crystal tilts.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Rafal E. Dunin-Borkowski

References

REFERENCES

Farokhipoor, S., Magen, C., Venkatesan, S., Iniguez, J., Daumont, C.J.M., Rubi, D., Snoeck, E., Mostovoy, M., de Graaf, C., Muller, A., Doblinger, M., Scheu, C., and Noheda, B.: Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379 (2014).CrossRefGoogle Scholar
Lubk, A., Rossell, M.D., Seidel, J., Chu, Y.H., Ramesh, R., Hytch, M.J., and Snoeck, E.: Electromechanical coupling among edge dislocations, domain walls, and nanodomains in BiFeO3 revealed by unit-cell-wise strain and polarization maps. Nano Lett. 13, 1410 (2013).Google Scholar
Ohtomo, A., Muller, D.A., Grazul, J.L., and Hwang, H.Y.: Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378 (2002).CrossRefGoogle Scholar
Lee, H.N., Christen, H.M., Chisholm, M.F., Rouleau, C.M., and Lowndes, D.H.: Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395 (2005).Google Scholar
Hartel, P., Rose, H., and Dinges, C.: Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93 (1996).CrossRefGoogle Scholar
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H., and Pennycook, S.J.: Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004).Google Scholar
Tang, Y.L., Zhu, Y.L., Ma, X.L., Borisevich, A.Y., Morozovska, A.N., Eliseev, E.A., Wang, W.Y., Wang, Y.J., Xu, Y.B., Zhang, Z.D., and Pennycook, S.J.: Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 348, 547 (2015).Google Scholar
Chisholm, M.F., Luo, W., Oxley, M.P., Pantelides, S.T., and Lee, H.N.: Atomic-scale compensation phenomena at polar interfaces. Phys. Rev. Lett. 105, 197602 (2010).Google Scholar
Ishikawa, R., Okunishi, E., Sawada, H., Kondo, Y., Hosokawa, F., and Abe, E.: Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nat. Mater. 10, 278 (2011).Google Scholar
Maccagnano-Zacher, S.E., Mkhoyan, K.A., Kirkland, E.J., and Silcox, J.: Effects of tilt on high-resolution ADF-STEM imaging. Ultramicroscopy 108, 718 (2008).Google Scholar
Wang, P., Bleloch, A.L., Falke, U., and Goodhew, P.J.: Geometric aspects of lattice contrast visibility in nanocrystalline materials using HAADF STEM. Ultramicroscopy 106, 277 (2006).Google Scholar
Fitting, L., Thiel, S., Schmehl, A., Mannhart, J., and Muller, D.A.: Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3 . Ultramicroscopy 106, 1053 (2006).Google Scholar
Wu, X., Robertson, M.D., Kawasaki, M., and Baribeau, J.M.: Effects of small specimen tilt and probe convergence angle on ADF-STEM image contrast of Si0.8Ge0.2 epitaxial strained layers on (100) Si. Ultramicroscopy 114, 46 (2012).Google Scholar
So, Y.G. and Kimoto, K.J.: Effect of specimen misalignment on local structure analysis using annular dark-field imaging. J. Electron Microsc. 61, 207 (2012).Google Scholar
Zhou, D., Caspary, K.M., Sigle, W., Krause, F.F., Rosenauer, A., and Aken, P.A.: Sample tilt effects on atom column position determination in ABF-STEM imaging. Ultramicroscopy 160, 110 (2016).CrossRefGoogle ScholarPubMed
Yamazaki, T., Kawasaki, M., Watanabe, K., Hashimoto, I., and Shiojiri, M.: Effect of small crystal tilt on atomic-resolution high-angle annular dark field STEM imaging. Ultramicroscopy 92, 181 (2002).CrossRefGoogle ScholarPubMed
Dawber, M., Rabe, K.M., and Scott, J.F.: Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083 (2005).CrossRefGoogle Scholar
Scott, J.F.: Applications of modern ferroelectrics. Science 315, 954 (2007).Google Scholar
Jia, C.L., Urban, K.W., Alexe, M., Hesse, D., and Vrejoiu, I.: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3 . Science 331, 1420 (2011).Google Scholar
Chen, Z.B., Wang, X.L., Ringer, S.P., and Liao, X.Z.: Manipulation of nanoscale domain switching using an electron beam with omnidirectional electric field distribution. Phys. Rev. Lett. 117, 027601 (2016).Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., and Urban, K.: Electron microscopy image enhanced. Nature 392, 768 (1998).CrossRefGoogle Scholar
Batson, P.E., Dellby, N., and Krivanek, O.L.: Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617 (2002).CrossRefGoogle ScholarPubMed
Jia, C.L., Mi, S.B., Urban, K., Vrejoiu, I., Alexe, M., and Hesse, D.: Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57 (2008).CrossRefGoogle ScholarPubMed
Nelson, C.T., Winchester, B., Zhang, Y., Kim, S.J., Melville, A., Adamo, C., Folkman, C.M., Baek, S.H., Eom, C.B., Schlom, D.G., Chen, L.Q., and Pan, X.: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828 (2011).CrossRefGoogle ScholarPubMed
Koch, C.: Determination of core structure periodicity and point defect density along dislocations. Ph.D Thesis, Arizona State University, 2002.Google Scholar
Anthony, S.M. and Granick, S.: Image analysis with rapid and accurate two-dimensional Gaussian fitting. Langmuir 25, 8152 (2009).Google Scholar
Meyer, B. and Vanderbilt, D.: Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B: Condens. Matter Mater. Phys. 65, 104111 (2002).Google Scholar
Tang, Y.L., Zhu, Y.L., and Ma, X.L.: On the benefit of aberration-corrected HAADF-STEM for strain determination and its application to tailoring ferroelectric domain patterns. Ultramicroscopy 160, 57 (2016).CrossRefGoogle ScholarPubMed