Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T17:47:46.571Z Has data issue: false hasContentIssue false

Aging-induced double hysteresis loops in bismuth-doped (Ba,Ca)TiO3 ferroelectric ceramics

Published online by Cambridge University Press:  31 January 2011

Sining Yun*
Affiliation:
Institute of Powder Engineering, School of Material Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; and Department of Materials Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
Jing Shi
Affiliation:
Department of Materials Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
Delong Xu
Affiliation:
Institute of Powder Engineering, School of Material Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
*
a) Address all correspondence to this author. e-mail: alexsyun1974@yahoo.com.cn
Get access

Abstract

Bismuth-doped (Ba1−xCax)TiO3 ceramics (x = 0.10, Bi-BCT) were prepared by a conventional solid-state reaction technique. An abnormal double-like hysteresis polarization–electric (P–E) loop was observed at room temperature for aged Bi-BCT. Raman scattering gives critical evidence for the formation of O2− vacancies in Bi-BCT. The change from the single P–E loops in the fresh samples to the double loops in the aged samples excludes the existence of a ferroelectric–antiferroelectric transition in Bi-BCT. A reversible domain switching mechanism resulting from a symmetry-conforming short-range ordering of point defects gives a reasonable explanation for the naturally age-induced double-like P–E loops in Bi-BCT.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Arlt, G. and Neumann, H.: Internal bias in ferroelectric ceramics: Origin and time dependence. Ferroelectrics 87, 109 (1988).CrossRefGoogle Scholar
2.Yasuda, N. and Konda, J.: Successive paraelectric-antiferroelectric phase transitions in highly ordered perovskite lead ytterbium tantalite. Appl. Phys. Lett. 62, 535 (1993).CrossRefGoogle Scholar
3.Uchino, K. and Nomura, S.: Dielectric and magnetic properties in the solid solution system Pb(Fe2/3W1/3)O3-Pb(Co1/2W1/2)O3. Ferroelectrics 17, 505 (1978).Google Scholar
4.Chu, F., Setter, N., and Tagantsev, A.K.: The spontaneous relaxorferroelectric transition of Pb(Sc0.5Ta0.5)O3. J. Appl. Phys. 74, 5129 (1993).CrossRefGoogle Scholar
5.Hachiga, T., Fujimoto, S., and Yasuda, N.: Pressure and temperature dependence of dielectric properties of Pb(Co1/2W1/2)O3. Jpn. J. Appl. Phys. 24 (2), Suppl., 239 (1985).CrossRefGoogle Scholar
6.Tu, C.S., Siny, I.G., and Schmidt, V.H.: Sequence of dielectric anomalies and high-temperature relaxation behavior in Na1/2 Bi1/2TiO3. Phys. Rev. B 49, 11550 (1994).CrossRefGoogle Scholar
7.Takanaka, T. and Maruyama, K.I.: Na1/2Bi1/2TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30(9B), 2236 (1991).CrossRefGoogle Scholar
8.Sakata, K., Takenaka, T., and Naitou, Y.: Phase relations, dielectric and piezoelectric properties of ceramics in the system Na1/2 Bi1/2TiO3–PbTiO3. Ferroelectrics 131, 219 (1992).CrossRefGoogle Scholar
9.Ren, X.: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91 (2004).CrossRefGoogle ScholarPubMed
10.Zhang, L.X., Chen, W., and Ren, X.: Large recoverable electrostrain in Mn-doped (Ba,Sr) TiO3 ceramics. Appl. Phys. Lett. 85, 5658 (2004).Google Scholar
11.Feng, Z.Y. and Ren, X.: Aging effect and large recoverable electrostrain in Mn-doped KNbO3-based ferroelectrics. Appl. Phys. Lett. 91, 032904 (2007).CrossRefGoogle Scholar
12.Yuan, G.L., Yang, Y., and Or, S.W.: Aging-induced double ferroelectric hysteresis loops in BiFeO3 multiferroic ceramic. Appl. Phys. Lett. 91, 122907 (2007).CrossRefGoogle Scholar
13.Yun, S.N. and Wang, X.L.: Dielectric properties of bismuth doped BaxCaxTiO3 ceramics. Mater. Lett. 60, 2211 (2006).CrossRefGoogle Scholar
14.Han, Y.H., Appleby, J.B., and Smyth, D.M.: Calcium as an acceptor impurity in BaTiO3. J. Am. Ceram. Soc. 70, 96 (1987).Google Scholar
15.Zhuang, Z.Q., Harmer, M.P., Smyth, D.M., and Newnham, R.E.: The effect of octahedrally-coordinated calcium on the ferroelectric transition of BaTiO3. Mater. Res. Bull. 22, 1329 (1987).CrossRefGoogle Scholar
16.Krishna, P.S.R., Pandey, D., Tiwari, V.S., Chakravarthy, R., and Dasannacharya, B.A.: Effect of powder synthesis procedure on calcium site occupancies in barium calcium titanate: A Rietveld analysis. Appl. Phys. Lett. 62, 231 (1993).CrossRefGoogle Scholar
17.Chang, M.C. and Yu, S.C.: Raman study for (Ba1·xCax)TiO3 and Ba(Ti1·yCay)O3 crystalline ceramics. J. Mater. Sci. Lett. 19, 1323 (2000).CrossRefGoogle Scholar
18.Park, J.G., Oh, T.S., and Kim, Y.H.: Dielectric properties and microstructural behaviour of B-site calcium-doped barium titanate ceramics. J. Mater. Sci. 27, 5713 (1992).Google Scholar
19.Burns, G.: Lattice modes in ferroelectric perovskites. II. Pbl·xBax TiO3 including BaTiO3. Phys. Rev. B 10, 1951 (1974).CrossRefGoogle Scholar
20.Begg, B.D., Finnie, K.S., and Vance, E.R.: Raman study of the relationship between room-temperature tetragonality and the curie point of barium titanate. J. Am. Ceram. Soc. 79, 2666 (1996).CrossRefGoogle Scholar
21.Liu, W.F., Chen, W., Yang, L., Zhang, L.X., Wang, Y., Zhou, C., Li, S.T., and Ren, X.: Ferroelectric aging effect in hybrid-doped BaTiO3 ceramics and the associated large recoverable electrostrain. Appl. Phys. Lett. 89, 172908 (2006).CrossRefGoogle Scholar
22.Uchino, K.: Ferroelectric Device (CRC Press, New York, 2000), p. 279.Google Scholar
23.Tan, Q., Li, J.F., and Viehland, D.: Role of lower valent substituentoxygen vacancy complexes in polarization pinning in potassiummodified lead zirconate titanate. Appl. Phys. Lett. 75, 418 (1999).CrossRefGoogle Scholar
24.Wang, X. and Chen, H.: Dielectric behaviors under high electric field for Pb(Zn1/3Nb2/3)O3–PbTiO3–BaTiO3 relaxor ferroelectric ceramics. J. Appl. Phys. 91, 5979 (2002).CrossRefGoogle Scholar
25.Feng, Z.Y. and Ren, X.: Striking similarity of ferroelectric aging effect in tetragonal, orthorhombic and rhombohedral crystal structures. Phys. Rev. B 77, 134115 (2008).CrossRefGoogle Scholar