Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T10:54:28.012Z Has data issue: false hasContentIssue false

Ab-initio molecular characterization of nonclassical fullerenes cluster using two probe approach

Published online by Cambridge University Press:  05 January 2017

Milanpreet Kaur*
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab 143001, India
Ravinder Singh Sawhney
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab 143001, India
Derick Engles
Affiliation:
Department of Electronics Technology, Guru Nanak Dev University, Amritsar, Punjab 143001, India
*
a) Address all correspondence to this author. e-mail: mkb1313@yahoo.com
Get access

Abstract

We outline the scrutiny of the two probe devices formed by placing the nonclassical fullerene molecules CM (20 ≤ M ≤ 30) within semi-infinite gold electrodes using density functional theory. The electronic structure and molecular orbitals of isolated fullerene molecules are broadened to form junction devices with charge injection at zero as well as variegated bias respectively. The molecular junctions thus formed are contemplated for two important electrical constitutions, current, and conductance. These parameters are then elaborated and contemplated for their electronic parameters namely, the density of states, transmission coefficient, molecular orbitals, molecular projected self-consistent Hamiltonian states, electron density, and Mulliken population. We conclude that C20 and C24 fullerene molecule exhibits extremely metallic behavior while others fail to demonstrate such behavior. The molecular device, thus formed, strongly supports the superconductive behavior of the C24 molecule with an ability to easily adapt by modulating its active molecular orbitals under applied potential.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fowler, P.W. and Manolopoulos, D.E.: An Atlas of Fullerenes (Clarendon Press, Oxford, 1995).Google Scholar
Guldi, D.M. and Martín, N.: Fullerenes: From Synthesis to Optoelectronic Properties (Kluwer Academic Publishers, Dordrecht, 2002).CrossRefGoogle Scholar
Krätschmer, W., Lamb, L.D., Fostiropoulos, K., and Huffman, D.R.: Solid C60: A new form of carbon. Nature 347, 354 (1990).CrossRefGoogle Scholar
Hebard, A.F., Rosseinskky, M.J., Haddon, R.C., Murphy, D.W., Glarum, S.T., Palstra, T.T.M., Ramirez, A.P., and Kortan, A.R.: Superconductivity at 18 K in potassium-doped C60 . Nature 350, 600 (1992).CrossRefGoogle Scholar
Winter, J. and Kuzmany, H.: Potassium-doped fullerene K X C60 with X = 0, 1, 2, 3, 4, and 6. Solid State Commun. 84, 935 (1992).CrossRefGoogle Scholar
Stephens, P.W., Cox, D., Lauher, J.W., Mihaly, L., Wiley, J.B., Allemand, P.M., Hirsch, A., Holczer, K., Li, Q., Thompson, J.D., and Wudl, F.: Lattice structure of the fullerene ferromagnet, TDAE-C60 . Nature 355, 331 (1992).CrossRefGoogle Scholar
Li, Y., Huang, Y., Du, S., and Liu, R.: Structures and stabilities of C60-rings. Chem. Phys. Lett. 335, 524 (2001).CrossRefGoogle Scholar
Ruoff, R.S., Tse, D.S., Malhotra, R., and Lorents, D.C.: Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 97, 3379 (1993).CrossRefGoogle Scholar
Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., and Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162 (1985).CrossRefGoogle Scholar
Xu, S.H., Zhang, M.Y., Zhao, Y.Y., Chen, B.G., Zhang, J., and Sun, C.C.: Super-valence phenomenon of carbon atoms in C20 molecule. J. Mol. Struct.: THEOCHEM 760, 87 (2006).CrossRefGoogle Scholar
Kroto, H.W.: The stability of the fullerenes C n , with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329, 529 (1986).CrossRefGoogle Scholar
Campbell, E.E.B., Fowler, P.W., Mitchell, D., and Zerbetto, F.: Increasing cost of pentagon adjacency for larger fullerenes. Chem. Phys. Lett. 250, 544548 (1996).CrossRefGoogle Scholar
Albertazzi, E., Domene, C., Fowler, P.W., Heine, T., Seifert, G., Van Alsenoy, C., and Zerbetto, F.: Pentagon adjacency as a determinant of fullerene stability. Phys. Chem. Chem. Phys. 1, 2913 (1999).CrossRefGoogle Scholar
Aradhya, S.V. and Venkataraman, L.: Single-molecule junctions beyond electronics transport. Nat. Nanotechnol. 8, 399 (2013).CrossRefGoogle ScholarPubMed
Xu, B.Q. and Tao, N.J.: Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221 (2003).CrossRefGoogle ScholarPubMed
Aviram, A. and Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29, 277 (1974).CrossRefGoogle Scholar
Prinzbach, H., Weiler, A., Landenberger, P., Wahl, F., Wörth, J., Scott, L.T., Gelmont, M., Olevano, D., and Issendorff, B.V.: Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20 . Nature 407, 60 (2000).CrossRefGoogle ScholarPubMed
Sokolova, S., Lüchow, A., and Anderson, J.B.: Energetics of carbon clusters C20 from all-electron quantum Monte Carlo calculations. Chem. Phys. Lett. 323, 229 (2000).CrossRefGoogle Scholar
Spagnolatti, I., Bernasconi, M., and Benedek, G.: Electron-phonon interaction in the solid form of the smallest fullerene C20 . Europhys. Lett. 59, 572 (2002).CrossRefGoogle Scholar
An, Y.P., Yang, C.L., Wang, M.S., Ma, X.G., and Wang, D.H.: First-principles study of structure and quantum transport properties of C20 fullerene. J. Chem. Phys. 131, 024311 (2009).CrossRefGoogle ScholarPubMed
An, Y.P., Yang, C.L., Wang, M.S., Ma, X.G., and Wang, D.H.: First-principles study of transport properties of endohedral Li@C20 metallofullerene. Curr. Appl. Phys. 10, 260 (2010).CrossRefGoogle Scholar
Jensen, F. and Koch, H.: C24: Ring or fullerene? J. Chem. Phys. 108, 3213 (1998).CrossRefGoogle Scholar
An, W., Shao, N., Bulusu, S., and Zenga, X.C.: Ab initio calculation of carbon clusters. II. Relative stabilities of fullerene and nonfullerene C24 . J. Chem. Phys. 128, 084301 (2008).CrossRefGoogle ScholarPubMed
Zhao, W.K., Yang, C., Zhao, J., Wang, M., and Ma, X.: Orientation effect on the electronic transport properties of C-24 fullerene molecule. Phys. B 407, 2247 (2012).CrossRefGoogle Scholar
Kaur, M., Sawhney, R.S., and Engles, D.: In 2013 International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET) (IEEE, Chennai, 2013); pp. 426430.CrossRefGoogle Scholar
Kent, P.R.C., Towler, M.D., Needs, R.J., and Rajagopal, G.: Carbon clusters near the crossover to fullerene stability. Phys. Rev. B: Condens. Matter Mater. Phys. 62, 15394 (2000).CrossRefGoogle Scholar
Lu, X. and Chen, Z.: Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chem. Rev. 105, 3643 (2005).CrossRefGoogle ScholarPubMed
Hong, B., Chang, Y., Jalbout, A.F., Su, Z., and Wang, R.: On the chlorides of C26 fullerene. A theoretical study. Mol. Phys. 105, 95 (2007).CrossRefGoogle Scholar
Małolepsza, E. and Witek, H.A.: Comparison of geometric, electronic, and vibrational properties for isomers of small fullerenes C20–C36 . J. Phys. Chem. A 111, 6649 (2007).CrossRefGoogle ScholarPubMed
An, J., Gan, L., Zhao, J., and Li, R.: A global search for the lowest energy isomer of C26 . J. Chem. Phys. 132, 154304 (2010).CrossRefGoogle ScholarPubMed
Martin, J.M.L.: C28: The smallest stable fullerene? Chem. Phys. Lett. 255, 1 (1996).CrossRefGoogle Scholar
Makurin, Y.N., Sofronov, A.A., Gusev, A.I., and Ivanovsky, A.L.: Electronic structure and chemical stabilization of C28 fullerene. Chem. Phys. 270, 293 (2001).CrossRefGoogle Scholar
Mishra, R.K., Lin, Y.T., and Lee, S.L.: C28 (D2): Fullerene growth mechanism. Int. J. Quantum Chem. 84, 642 (2001).CrossRefGoogle Scholar
Pahuja, A. and Srivastava, S.: Electronic transport properties of doped C28 fullerene. Phys. Res. Int. 2014, 872381 (2014).CrossRefGoogle Scholar
Song, J., Parker, M., Schoendorff, G., Kus, A., and Vaziri, M.: A study on the electronic and structural properties of fullerene C30 and azafullerene C18N12 . J. Mol. Struct.: THEOCHEM 942, 71 (2010).CrossRefGoogle Scholar
Jones, R.O.: Density functional study of carbon clusters C2n C2n (2 ≤ n ≤ 16) I. Structure and bonding in the neutral clusters. J. Chem. Phys. 110, 5189 (1999).CrossRefGoogle Scholar
Zhang, R.Q., Feng, Y.Q., Lee, S.T., and Bai, C.L.: Electrical transport and electronic delocalization of small fullerenes. J. Phys. Chem. B 108, 16636 (2004).CrossRefGoogle Scholar
Kaur, M., Sawhney, R.S., and Engles, D.: Non-equilibrium tunneling through Au–C20–Au molecular bridge using density functional theory–non-equilibrium Green function approach. J. Mater. Res. 31, 2025 (2016).CrossRefGoogle Scholar
Kaur, M., Sawhney, R.S., and Engles, D.: Transport in fullerene device coupled to Cu, Ag and Au electrodes. Mol. Phys. 114, 3255 (2016).CrossRefGoogle Scholar
Stokbro, K.: First-principles modeling of electron transport. J. Phys.: Condens. Matter 20, 064216 (2008).Google ScholarPubMed
Atomistix Tool Kit Manual Version 13.8.0 (Copyright QuantumWise 2008–2016). Google Scholar
Strange, M., Kristensen, S., Thygesen, K.S., and Jacobsen, K.W.: Benchmark density functional theory calculations for nanoscale conductance. J. Chem. Phys. 128, 114714 (2008).CrossRefGoogle ScholarPubMed
Troullier, N. and Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 43, 1993 (1991).CrossRefGoogle ScholarPubMed
van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D., and Foxon, C.T.: Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848 (1988).CrossRefGoogle Scholar
Solomon, G.C., Herrmann, C., Hansen, T., Mujica, V., and Ratner, M.A.: Exploring local currents in molecular junctions. Nat. Chem. 2, 223 (2010).CrossRefGoogle ScholarPubMed