Hostname: page-component-857557d7f7-qdphv Total loading time: 0 Render date: 2025-11-24T22:02:50.582Z Has data issue: false hasContentIssue false

Molecular differences in the nasal microenvironment of chronic rhinosinusitis with nasal polyposis: a systematic review

Published online by Cambridge University Press:  30 July 2025

Maria Riga*
Affiliation:
Department of Otorhinolaryngology Head & Neck Surgery, Dammam Health Network, Dammam, Kingdom of Saudi Arabia
Rizam Alghamdi
Affiliation:
Department of Otorhinolaryngology Head & Neck Surgery, Dammam Health Network, Dammam, Kingdom of Saudi Arabia
Moath Alfaleh
Affiliation:
Department of Otorhinolaryngology Head & Neck Surgery, Dammam Health Network, Dammam, Kingdom of Saudi Arabia
Omar Alanzi
Affiliation:
Department of Otorhinolaryngology Head & Neck Surgery, Dammam Health Network, Dammam, Kingdom of Saudi Arabia
*
Corresponding author: Maria Riga; Email: mariariga@hotmail.com

Abstract

Objectives

The present review aims at an insight into the pathophysiology of chronic rhinosinusitis with nasal polyposis through the combination of three tissue sources: (1) nasal polyp, (2) neighboring non-polypoid mucosa (MS) and (3) healthy controls.

Methods

The primary outcomes included three lists of molecules (1) those significantly different between nasal polyp, neighboring non-polypoid mucosa and controls (2) those up/downregulated in nasal polyp, but comparable between MS and controls and (3) those comparable between nasal polyp and neighboring non-polypoid mucosa, but different between NP and controls.

Results

Ten studies investigating a large variety of 68 molecules presented comparisons between nasal polyp and neighboring non-polypoid mucosa in endotype-specified populations. Comparisons between nasal polyp and neighboring non-polypoid mucosa are approached separately for eosinophilic/non-eosinophilic chronic rhinosinusitis with nasal polyposis . The small number of studies prohibits a meta-analysis.

Conclusion

Inclusion of neighboring non-polypoid mucosa in future studies may provide a bias-free list of the molecules that contribute to the actual pathogenesis and preservation of nasal polyps within the chronic rhinosinusitis inflammatory environment.

Information

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of J.L.O. (1984) LIMITED.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Maria Riga takes responsibility for the integrity of the content of the paper

References

Lacroix, JS, Zheng, CG, Goytom, SH, Landis, B, Szalay-Quinodoz, I, Malis, DD. Histological comparison of nasal polyposis in black African, Chinese and Caucasian patients. Rhinology 2002;40:118–21Google ScholarPubMed
Ardehali, MM, Amali, A, Bakhshaee, M, Madani, Z. Histopathologic characteristics of inferior turbinate vs ethmoidal polyp in chronic rhinosinusitis. Ann Diagn Pathol 2011;15:233–6CrossRefGoogle ScholarPubMed
Andrews, AE, Bryson, JM, Rowe-Jones, JM. Site of origin of nasal polyps: relevance to pathogenesis and management. Rhinology 2005;43:180–4Google Scholar
Moher, D, Shamseer, L, Clarke, M, Ghersi, D, Liberati, A, Petticrew, M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015;4:1CrossRefGoogle ScholarPubMed
Alanzi, OA, AlBlaies, WF, Elnadif, IA, Riga, MG. Biases related to periostin levels in chronic rhinosinusitis with nasal polyposis: a systematic review. Rhinology 2024;62:1322Google ScholarPubMed
Eweiss, A, Dogheim, Y, Hassab, M, Tayel, H, Hammad, Z. VCAM-1 and eosinophilia in diffuse sino-nasal polyps. Eur Arch Otorhinolaryngol 2009;266:377–83CrossRefGoogle ScholarPubMed
Ryu, G, Kim, DW. Th2 inflammatory responses in the development of nasal polyps and chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2020;20:18CrossRefGoogle ScholarPubMed
Ho, J, Earls, P, Harvey, RJ. Systemic biomarkers of eosinophilic chronic rhinosinusitis. Curr Opin Allergy Clin Immunol 2020;20:23–9CrossRefGoogle ScholarPubMed
Guo, C-L, Liu, F-F, Wang, D-Y, Liu, Z. Type 2 biomarkers for the indication and response to biologics in CRSwNP. Curr Allergy Asthma Rep 2023;23:703–13CrossRefGoogle Scholar
Nakayama, T, Haruna, SI. A review of current biomarkers in chronic rhinosinusitis with or without nasal polyps. Expert Rev Clin Immunol 2023;19:883–92CrossRefGoogle ScholarPubMed
Chen, YS, Westhofen, M, Lorenzen, J. Telomerase in nasal polyps. Am J Rhinol 2007;21:354–8CrossRefGoogle ScholarPubMed
Li, J-Y, Fang, S-Y. Allergic profiles in unilateral nasal polyps of bilateral chronic rhinosinusitis. Am J Rhinol 2008;22:111–14CrossRefGoogle ScholarPubMed
Linke, R, Pries, R, Könnecke, M, Bruchhage, K-L, Böscke, R, Gebhard, M, et al. Glycogen synthase kinase 3 in chronic rhinosinusitis: two faces of a single enzyme in one disease. Ann Allergy Asthma Immunol 2013;110:101–16CrossRefGoogle ScholarPubMed
Kim, D-K, Park, M-H, Chang, D-Y, Eun, KM, Shin, H-W, Mo, J-H, et al. MBP-positive and CD11c-positive cells are associated with different phenotypes of Korean patients with non-asthmatic chronic rhinosinusitis. PLoS One 2014;9:e111352CrossRefGoogle ScholarPubMed
Könnecke, M, Böscke, R, Waldmann, A, Bruchhage, K-L, Linke, R, Pries, R, et al. Immune imbalance in nasal polyps of Caucasian chronic rhinosinusitis patients is associated with a downregulation of E-selectin. J Immunol Res 2014;2014:959854CrossRefGoogle ScholarPubMed
Linke, R, Pries, R, Könnecke, M, Bruchhage, K-L, Böscke, R, Gebhard, M, et al. The MEK1/2-ERK1/2 pathway is activated in chronic rhinosinusitis with nasal polyps. Arch Immunol Ther Exp (Warsz) 2014;62:217–29CrossRefGoogle ScholarPubMed
Linke, R, Pries, R, Könnecke, M, Bruchhage, K-L, Böscke, R, Gebhard, M, et al. Increased phosphorylation of STAT5b, but not STAT5a, in nasal polyps. Am J Rhinol Allergy 2015;29:182–7CrossRefGoogle Scholar
Kim, DK, Eun, KM, Kim, MK, Cho, D, Han, SA, Han, SY, et al. Comparison between signature cytokines of nasal tissues in subtypes of chronic rhinosinusitis. Allergy Asthma Immunol Res 2019;11:201–11CrossRefGoogle ScholarPubMed
Kobayashi, Y, Kanda, A, Yun, Y, Van, BD, Suzuki, K, Sawada, S, et al. Reduced local response to corticosteroids in eosinophilic chronic rhinosinusitis with asthma. Biomolecules 2020;10:326CrossRefGoogle ScholarPubMed
Takemoto, K, Lomude, LS, Takeno, S, Kawasume, T, Okamoto, Y, Hamamoto, T, et al. Functional alteration and differential expression of the bitter taste receptor T2R38 in human paranasal sinus in patients with chronic rhinosinusitis. Int J Mol Sci 2023;24:4499CrossRefGoogle Scholar
Chen, Y-S, Arab, SF, Westhofen, M, Lorenzen, J. Expression of interleukin-5, interleukin-8, and interleukin-10 mRNA in the osteomeatal complex in nasal polyposis. Am J Rhinol 2005;19:117–23CrossRefGoogle ScholarPubMed
Danielsen, A, Tynning, T, Brokstad, KA, Olofsson, J, Davidsson, A. Interleukin 5, IL6, IL12, IFN-gamma, RANTES and Fractalkine in human nasal polyps, turbinate mucosa and serum. Eur Arch Otorhinolaryngol 2006;263:282–9CrossRefGoogle Scholar
Iino, Y, Miyazawa, T, Kakizaki, K, Saigusa, H, Katano, H, Shiga, J, et al. Expression of ecalectin, a novel eosinophil chemoattractant, in nasal polyps. Acta Otolaryngol 2006;126:4350CrossRefGoogle ScholarPubMed
Zaravinos, A, Soufla, G, Bizakis, J, Spandidos, DA. Expression analysis of VEGFA, FGF2, TGFbeta1, EGF and IGF1 in human nasal polyposis. Oncol Rep 2008;19:385–91Google ScholarPubMed
Coffey, CS, Mulligan, RM, Schlosser, RJ. Mucosal expression of nerve growth factor and brain-derived neurotrophic factor in chronic rhinosinusitis. Am J Rhinol Allergy 2009;23:571–4CrossRefGoogle ScholarPubMed
Eweiss, A, Dogheim, Y, Hassab, M, Tayel, H, Hammad, Z. VCAM-1 and eosinophilia in diffuse sino-nasal polyps. Eur Arch Otorhinolaryngol 2009;266:377–83CrossRefGoogle ScholarPubMed
Vinokur, V, Berenshtein, E, Chevion, MM, Eliashar, R. Iron homeostasis and methionine-centred redox cycle in nasal polyposis. Free Radic Res 2011;45:366–73CrossRefGoogle ScholarPubMed
Poposki, JA, Uzzaman, A, Nagarkar, DR, Chustz, RT, Peters, AT, Suh, LA, et al. Increased expression of the chemokine CCL23 in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2011;128:73–81.e4CrossRefGoogle ScholarPubMed
Håkansson, K, Bachert, C, Konge, L, Thomsen, SF, Pedersen, AE, Poulsen, SS, et al. Airway inflammation in chronic rhinosinusitis with nasal polyps and asthma: the united airways concept further supported. PLoS One 2015;10:e0127228CrossRefGoogle ScholarPubMed
Shin, H-W, Kim, D-K, Park, M-H, Eun, KM, Lee, M, So, D, et al. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol 2015;135:1476–85.e7CrossRefGoogle ScholarPubMed
Homma, T, Kato, A, Sakashita, M, Takabayashi, T, Norton, JE, Suh, LA, et al. Potential involvement of the epidermal growth factor receptor ligand epiregulin and matrix Metalloproteinase-1 in pathogenesis of chronic rhinosinusitis. Am J Respir Cell Mol Biol 2017;57:334–45CrossRefGoogle ScholarPubMed
Kidoguchi, M, Noguchi, E, Nakamura, T, Ninomiya, T, Yoshida, K, Morikawa, T, et al. DNA methylation of proximal PLAT promoter in chronic rhinosinusitis with nasal polyps. Am J Rhinol Allergy 2018;32:374–9CrossRefGoogle ScholarPubMed
Kohanski, MA, Workman, AD, Patel, NN, Hung, L-Y, Shtraks, JP, Chen, B, et al. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2018;142:460–469.e7CrossRefGoogle ScholarPubMed
Ryu, G, Bae, JS, Kim, JH, Kim, EH, Lyu, L, Chung, YJ, et al. Role of IL-17A in chronic rhinosinusitis with nasal polyp. Allergy Asthma Immunol Res 2020;12:507–22CrossRefGoogle ScholarPubMed
Jeruzal-Świątecka, J, Borkowska, E, Łaszczych, M, Nowicka, Z, Pietruszewska, W. TAS2R38 bitter taste receptor expression in chronic rhinosinusitis with nasal polyps: new data on polypoid tissue. Int J Mol Sci 2022;23:7345CrossRefGoogle ScholarPubMed
Nguyen, TN, Suzuki, H, Yoshida, Y, Ohkubo, J-I, Wakasugi, T, Kitamura, T. Decreased CFTR/PPARγ and increased transglutaminase 2 in nasal polyps. Auris Nasus Larynx 2022;49:964–72CrossRefGoogle ScholarPubMed
Gomes, SC, Delemarre, T, Holtappels, G, Van, Zele T, Derycke, L, Bonne, E, et al. Olfaction in nasal polyp patients after reboot surgery: an endotype-based prospective study. Eur Arch Otorhinolaryngol 2023;280:2821–30CrossRefGoogle ScholarPubMed
Xiong, G-X, Zhan, J-M, Jiang, H-Y, Li, J-F, Rong, L-W, Xu, G. Computational fluid dynamics simulation of airflow in the normal nasal cavity and paranasal sinuses. Am J Rhinol 2008;22:477–82. Erratum in: Am J Rhinol 2008;22:664. Xu, Gen [corrected to Xu, Geng]CrossRefGoogle ScholarPubMed
Sommer, F, Kroger, R, Lindemann, J. Numerical simulation of humidification and heating during inspiration within an adult nose. Rhinology 2012;50:157–64CrossRefGoogle ScholarPubMed
Wang de, Y, Lee, HP, Gordon, BR. Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models. Clin Exp Otorhinolaryngol 2012;5:181–7CrossRefGoogle ScholarPubMed
Takeno, S, Yoshimura, H, Kubota, K, Taruya, T, Ishino, T, Hirakawa, K. Comparison of nasal nitric oxide levels between the inferior turbinate surface and the middle meatus in patients with symptomatic allergic rhinitis. Allergol Int 2014;63:475–83CrossRefGoogle ScholarPubMed
Berger, G, Finkelstein, Y, Ophir, D, Landsberg, R. Old and new aspects of middle turbinate histopathology. Otolaryngol Head Neck Surg 2009;140:4854CrossRefGoogle ScholarPubMed
Pezato, R, Voegels, RL, Pinto Bezerra, TF, Perez-Novo, C, Stamm, AC, Gregorio, LC. Mechanical disfunction in the mucosal oedema formation of patients with nasal polyps. Rhinology 2014;52:162–6CrossRefGoogle ScholarPubMed
Pezato, R, Voegels, RL, Stamm, AC, Gregório, LC. Why we should avoid using inferior turbinate tissue as control to nasal polyposis studies. Acta Otolaryngol 2016;136:973–5CrossRefGoogle ScholarPubMed
Supplementary material: File

Riga et al. supplementary material

Riga et al. supplementary material
Download Riga et al. supplementary material(File)
File 47.8 KB