Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T01:31:48.220Z Has data issue: false hasContentIssue false

Reliability of diffusion-weighted magnetic resonance imaging in differentiation of recurrent cholesteatoma and granulation tissue after intact canal wall mastoidectomy

Published online by Cambridge University Press:  18 November 2019

H S Allam
Affiliation:
Department of Otolaryngology Head and Neck Surgery, Mansoura University Faculty of Medicine, Egypt
A A K Abdel Razek*
Affiliation:
Department of Diagnostic Radiology, Mansoura University Faculty of Medicine, Egypt
B Ashraf
Affiliation:
Department of Otolaryngology Head and Neck Surgery, Mansoura University Faculty of Medicine, Egypt
M Khalek
Affiliation:
Department of Otolaryngology Head and Neck Surgery, Mansoura University Faculty of Medicine, Egypt
*
Author for correspondence: Dr Ahmed Abdel Khalek Abdel Razek, Department of Diagnostic Radiology, Mansoura University Faculty of Medicine, 60 Elgomheryia Street, Mansoura, Egypt3512 E-mail: arazek@mans.edu.eg Fax: +20 502 259 146

Abstract

Objective

To assess the reliability of diffusion-weighted magnetic resonance imaging in differentiating recurrent cholesteatoma from granulation tissue after intact canal wall mastoidectomy.

Methods

A prospective study was conducted of 56 consecutive patients with suspected cholesteatoma recurrence after intact canal wall mastoidectomy who underwent diffusion-weighted imaging and delayed contrast magnetic resonance imaging of the temporal bone. The final diagnosis was recurrence in 38 patients and granulation tissue in 18 patients.

Results

Cholesteatoma detection on diffusion-weighted imaging based on two sets of readings had sensitivity of 94.7 and 94.7 per cent, specificity of 94.4 and 88.9 per cent, and accuracy of 94.6 and 92.8 per cent, with good intra-observer agreement (Κ = 0.72, p = 0.001). Cholesteatoma detection on delayed contrast magnetic resonance imaging had sensitivity of 81.6 and 78.9 per cent, specificity of 77.8 and 66.7 per cent, and accuracy of 80.4 and 75.0 per cent, with fair intra-observer agreement (Κ = 0.57, p = 0.001). The mean cholesteatoma diameter on diffusion-weighted imaging was 7.7 ± 1.8 and 7.9 ± 1.8 mm, with excellent intra-observer agreement (Κ = 0.994, p = 0.001).

Conclusion

Diffusion-weighted imaging is a reliable method for differentiating recurrent cholesteatoma and granulation tissue after intact canal wall mastoidectomy.

Type
Main Articles
Copyright
Copyright © JLO (1984) Limited, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dr A A K Abdel Razek takes responsibility for the integrity of the content of the paper

References

1Liu, SC, Chen, SG, Wang, CH, Huang, BR. Mastoid obliteration, scutum plasty, and ossiculoplasty without staging after canal-wall-up attico-mastoidectomy in adults. Ear Nose Throat J 2018;97:E1823Google ScholarPubMed
2Kerckhoffs, KG, Kommer, MB, van Strien, TH, Visscher, SJ, Bruijnzeel, H, Smit, AL et al. The disease recurrence rate after the canal wall up or canal wall down technique in adults. Laryngoscope 2016;126:980–710.1002/lary.25591CrossRefGoogle ScholarPubMed
3Tomlin, J, Chang, D, McCutcheon, B, Harris, J. Surgical technique and recurrence in cholesteatoma: a meta-analysis. Audiol Neurootol 2013;18:135–42CrossRefGoogle ScholarPubMed
4Lingam, RK, Kumar, R, Vaidhyanath, R. Inflammation of the temporal bone. Neuroimaging Clin N Am 2019;29:117CrossRefGoogle ScholarPubMed
5Khemani, S, Singh, A, Lingam, RK, Kalan, A. Imaging of postoperative middle ear cholesteatoma. Clin Radiol 2011;66:760–710.1016/j.crad.2010.12.019CrossRefGoogle ScholarPubMed
6Razek, AA, Ghonim, MR, Ashraf, B. Computed tomography staging of middle ear cholesteatoma. Pol J Radiol 2015;80:328–33Google ScholarPubMed
7Gamaleldin, OA, Elsebaie, NA, Khalifa, MH, Abdel Razek, AAK, Mehanna, AM, Shehata, GM. Assessment of mass effect sign at high-resolution computed tomography in prediction of cholesteatoma. J Comput Assist Tomogr 2019;43:288–9310.1097/RCT.0000000000000812CrossRefGoogle ScholarPubMed
8Çelebi, İ, Bozkurt, G, Mahmutoğlu, AS, Guliyev, U. Multidetector computed tomography findings of auto-evacuated secondary acquired cholesteatoma: a morphologic and quantitative analysis. J Int Adv Otol 2018;14:464–71CrossRefGoogle ScholarPubMed
9De Foer, B, Vercruysse, JP, Somers, T, Casselman, J, Offeciers, E. Differentiation between cholesteatoma and inflammatory process of the middle ear, based on contrast-enhanced computed tomography imaging. J Laryngol Otol 2008;122:540–2Google ScholarPubMed
10Abdel Razek, A, Huang, B. Lesions of the petrous apex: classification and findings at CT and MR imaging. Radiographics 2012;32:151–73CrossRefGoogle Scholar
11Fukuda, A, Morita, S, Harada, T, Fujiwara, K, Hoshino, K, Nakamaru, Y et al. Value of T1-weighted magnetic resonance imaging in cholesteatoma detection. Otol Neurotol 2017;38:1440–4CrossRefGoogle ScholarPubMed
12Abdel Razek, AA, Nada, N. Role of diffusion-weighted MRI in differentiation of masticator space malignancy from infection. Dentomaxillofac Radiol 2013;42:20120183CrossRefGoogle ScholarPubMed
13Abdel Razek, AA, Kamal, E. Nasopharyngeal carcinoma: correlation of apparent diffusion coefficient value with prognostic parameters. Radiol Med 2013;118:534–910.1007/s11547-012-0890-xCrossRefGoogle ScholarPubMed
14Surov, A, Nagata, S, Razek, AA, Tirumani, SH, Wienke, A, Kahn, T. Comparison of ADC values in different malignancies of the skeletal musculature: a multicentric analysis. Skeletal Radiol 2015;44:995100010.1007/s00256-015-2141-5CrossRefGoogle ScholarPubMed
15Abdel Razek, AA, Soliman, N, Elashery, R. Apparent diffusion coefficient values of mediastinal masses in children. Eur J Radiol 2012;81:1311–1410.1016/j.ejrad.2011.03.008CrossRefGoogle ScholarPubMed
16Abdel Razek, A, Mossad, A, Ghonim, M. Role of diffusion-weighted MR imaging in assessing malignant versus benign skull-base lesions. Radiol Med 2011;116:125–32CrossRefGoogle ScholarPubMed
17Cherko, M, Nash, R, Singh, A, Lingam, RK. Diffusion-weighted magnetic resonance imaging as a novel imaging modality in assessing treatment response in necrotizing otitis externa. Otol Neurotol 2016;37:704–7CrossRefGoogle ScholarPubMed
18Razek, AAKA. Assessment of masses of the external ear with diffusion-weighted MR imaging. Otol Neurotol 2018;39:227–3110.1097/MAO.0000000000001629CrossRefGoogle ScholarPubMed
19Bazzi, K, Wong, E, Jufas, N, Patel, N. Diffusion-weighted magnetic resonance imaging in the detection of residual and recurrent cholesteatoma in children: a systematic review and meta-analysis. Int J Pediatr Otorhinolaryngol 2019;118:90–610.1016/j.ijporl.2018.12.031CrossRefGoogle ScholarPubMed
20Delrue, S, De Foer, B, van Dinther, J, Zarowski, A, Bernaerts, A, Vanspauwen, R et al. The value of diffusion-weighted MRI in the long-term follow-up after subtotal petrosectomy for extensive cholesteatoma and chronic suppurative otitis media. Otol Neurotol 2019;40:e2531CrossRefGoogle ScholarPubMed
21Lingam, RK, Nash, R, Majithia, A, Kalan, A, Singh, A. Non-echoplanar diffusion weighted imaging in the detection of post-operative middle ear cholesteatoma: navigating beyond the pitfalls to find the pearl. Insights Imaging 2016;7:669–7810.1007/s13244-016-0516-3CrossRefGoogle ScholarPubMed
22Lingam, RK, Bassett, P. A meta-analysis on the diagnostic performance of non-echoplanar diffusion-weighted imaging in detecting middle ear cholesteatoma: 10 years on. Otol Neurotol 2017;38:521–8CrossRefGoogle Scholar
23Muzaffar, J, Metcalfe, C, Colley, S, Coulson, C. Diffusion-weighted magnetic resonance imaging for residual and recurrent cholesteatoma: a systematic review and meta-analysis. Clin Otolaryngol 2017;42:536–4310.1111/coa.12762CrossRefGoogle ScholarPubMed
24van Egmond, SL, Stegeman, I, Grolman, W, Aarts, MC. A systematic review of non-echo planar diffusion-weighted magnetic resonance imaging for detection of primary and postoperative cholesteatoma. Otolaryngol Head Neck Surg 2016;154:233–40CrossRefGoogle ScholarPubMed
25Nash, R, Kalan, A, Lingam, RK, Singh, A. The role of diffusion-weighted magnetic resonance imaging in assessing residual/recurrent cholesteatoma after canal wall down mastoidectomy. Clin Otolaryngol 2016;41:307–910.1111/coa.12612CrossRefGoogle ScholarPubMed
26Steens, S, Venderink, W, Kunst, D, Meijer, A, Mylanus, E. Repeated postoperative follow-up diffusion-weighted magnetic resonance imaging to detect residual or recurrent cholesteatoma. Otol Neurotol 2016;37:356–61Google ScholarPubMed
27Clarke, SE, Mistry, D, AlThubaiti, T, Khan, MN, Morris, D, Bance, M. Diffusion-weighted magnetic resonance imaging of cholesteatoma using PROPELLER at 1.5T: a single-centre retrospective study. Can Assoc Radiol J 2017;68:116–2110.1016/j.carj.2016.05.002CrossRefGoogle ScholarPubMed
28Razek, AA, Castillo, M. Imaging appearance of granulomatous lesions of head and neck. Eur J Radiol 2010;76:5260CrossRefGoogle ScholarPubMed
29Abdel Razek, AAK. Diffusion tensor imaging in differentiation of residual head and neck squamous cell carcinoma from post-radiation changes. Magn Reson Imaging 2018;54:84–910.1016/j.mri.2018.08.009CrossRefGoogle ScholarPubMed
30Khalek Abdel Razek, AA. Characterization of salivary gland tumours with diffusion tensor imaging. Dentomaxillofac Radiol 2018;47:20170343CrossRefGoogle ScholarPubMed
31Razek, AAKA. Multi-parametric MR imaging using pseudo-continuous arterial-spin labeling and diffusion-weighted MR imaging in differentiating subtypes of parotid tumors. Magn Reson Imaging 2019;63:55–9CrossRefGoogle ScholarPubMed
32Razek, AAKA, El-Serougy, L, Abdelsalam, M, Gaballa, G, Talaat, M. Differentiation of residual/recurrent gliomas from postradiation necrosis with arterial spin labeling and diffusion tensor magnetic resonance imaging-derived metrics. Neuroradiology 2018;60:169–77CrossRefGoogle ScholarPubMed
33Abdel Razek, AA, Samir, S, Ashmalla, GA. Characterization of parotid tumors with dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging and diffusion-weighted MR imaging. J Comput Assist Tomogr 2017;41:131–6CrossRefGoogle ScholarPubMed
34Abdel Razek, AA, Elkhamary, S, Al-Mesfer, S, Alkatan, HM. Correlation of apparent diffusion coefficient at 3T with prognostic parameters of retinoblastoma. AJNR Am J Neuroradiol 2012;33:944–8CrossRefGoogle ScholarPubMed
35Foti, G, Beltramello, A, Minerva, G, Catania, M, Guerriero, M, Albanese, S et al. Identification of residual-recurrent cholesteatoma in operated ears: diagnostic accuracy of dual-energy CT and MRI. Radiol Med 2019;124:478–86CrossRefGoogle ScholarPubMed