Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T01:15:50.015Z Has data issue: false hasContentIssue false

Restriction maps in equivariant KK-theory

Published online by Cambridge University Press:  12 October 2011

Otgonbayar Uuye
Affiliation:
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen E, Denmarkotogo@math.ku.dk
Get access

Abstract

We extend McClure's results regarding restriction maps in equivariant K-theory to bivariant K-theory:

Let G be a compact Lie group and A and B be G-C*-algebras. Suppose that KKHn(A, B) is a finitely generated R(G)-module for every H ≤ G closed and n ∈ ℤ. Then, if KKF*(A, B) = 0 for all F ≤ Gfinite cyclic, then KKG*(A, B) = 0.

Type
Research Article
Copyright
Copyright © ISOPP 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AHJM88a.Adams, J. F., Haeberly, J.-P., Jackowski, S., and May, J. P., A generalization of the Atiyah-Segal completion theorem, Topology 27 (1988), no. 1, 16. MR MR935523 (90e:55026)Google Scholar
AHJM88b.Adams, J. F., Haeberly, J.-P., Jackowski, S., and May, J. P., A generalization of the Segal conjecture, Topology 27 (1988), no. 1, 721. MR 935524 (90e:55027)CrossRefGoogle Scholar
Ati68.Atiyah, M. F., Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford Ser. (2) 19 (1968), 113140. MR MR0228000 (37 #3584)CrossRefGoogle Scholar
BCH94.Baum, Paul, Connes, Alain, and Higson, Nigel, Classifying space for proper actions and K-theory of group C*-algebras, C*-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 240291. MR MR1292018 (96c:46070)Google Scholar
CEOO04.Chabert, J., Echterhoff, S., and Oyono-Oyono, H., Going-down functors, the Künneth formula, and the Baum-Connes conjecture, Geom. Funct. Anal. 14 (2004), no. 3, 491528. MR MR2100669 (2005h:19005)Google Scholar
Eme10.Emerson, H., Localization techniques in circle-equivariant KK-theory, ArXiv e-prints (2010).Google Scholar
Jac77.Jackowski, Stefan, Equivariant K-theory and cyclic subgroups, Transformation groups (Proc. Conf., Univ. Newcastle upon Tyne, Newcastle upon Tyne, 1976), London Math. Soc. Lecture Note Series 26, Cambridge Univ. Press, Cambridge, 1977, pp. 7691. MR MR0448377 (56 #6684)Google Scholar
Kas88.Kasparov, G. G., Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91 (1988), no. 1, 147201. MR MR918241 (88j:58123)CrossRefGoogle Scholar
May96.May, J. P., Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics 91, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1996, With contributions by M. Cole, G. Comezana, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner. MR MR1413302 (97k:55016)Google Scholar
McC86.McClure, James E., Restriction maps in equivariant K-theory, Topology 25 (1986), no. 4, 399409. MR 862427 (88f:55022)CrossRefGoogle Scholar
MM04.Matthey, Michel and Mislin, Guido, Equivariant K-homology and restriction to finite cyclic subgroups, K-Theory 32 (2004), no. 2, 167179. MR 2083579 (2005k:19012)CrossRefGoogle Scholar
MN06.Meyer, Ralf and Nest, Ryszard, The Baum-Connes conjecture via localisation of categories, Topology 45 (2006), no. 2, 209259. MR MR2193334 (2006k:19013)CrossRefGoogle Scholar
Phi89.Phillips, N. Christopher, The Atiyah-Segal completion theorem for C*-algebras, K-Theory 3 (1989), no. 5, 479504. MR MR1050491 (91k:46083)Google Scholar
Sch92.Schochet, Claude, On equivariant Kasparov theory and Spanier-Whitehead duality, K-Theory 6 (1992), no. 4, 363385. MR MR1193150 (94c:19006)Google Scholar
Seg68.Segal, Graeme, The representation ring of a compact Lie group, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 113128. MR MR0248277 (40 #1529)CrossRefGoogle Scholar