Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T09:07:53.012Z Has data issue: false hasContentIssue false

p-adic cocycles and their regulator maps

Published online by Cambridge University Press:  19 October 2010

Zacky Choo
Affiliation:
School of Mathematics, University of Sheffield, Sheffield S37RH, U.K.zackychoo@yahoo.com
Victor Snaith
Affiliation:
School of Mathematics, University of Sheffield, Sheffield S37RH, U.K.v.snaith@sheffield.ac.uk
Get access

Abstract

We derive a power series formula for the p-adic regulator on the higher dimensional algebraic K-groups of number fields. This formula is designed to be well suited to computer calculations and to reduction modulo powers of p.

Type
Research Article
Copyright
Copyright © ISOPP 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burgos Gil, J.I.: The Regulators of Beilinson and Borel; Centre de Récherches Mathématiques Monograph Sér. 15, A.M. Soc (2002).Google Scholar
2. Choo, Z., Mannan, W., Garcia-Sanchez, R. and Snaith, V.P.: Computer calculations of the Borel regulator I and II; arXiv:0908.3765v2[math.KT] 4 Sep 2009 and arXiv:0909.0883v1[math.KT] 4 Sep 2009Google Scholar
3. Hamida, N.: Description explicite du régulateur de Borel; C.R. Acad. Sci. Paris Sr. I Math. 330 (2000) 169172.CrossRefGoogle Scholar
4. Hamida, N.: Le régulateur p-adique; C.R. Acad. Sci. Paris Sr. I Math. 342 (2006) 807812.CrossRefGoogle Scholar
5. Huber, A. and Kings, G.: A p-adic analogue of the Borel regulator and the Bloch-Kato exponential map; preprint DFG-Forschergruppe Regensburg/Leipzig (2006).Google Scholar
6. Karoubi, M.: Homologie cyclique et régulateurs en K-théorie algébrique; C.R. Acad. Sci. Paris Sr. I Math. 297 (1983) no.10, 557560.Google Scholar
7. Karoubi, M.: Homologie cyclique et K-théorie; Astérisque 149 (1987).Google Scholar
8. Lazard, M.: Groupes analytiques p-adiques; Pub. Math. I.H.E.S. 26 Paris (1965) 389603.Google Scholar
9. Nesterenko, Yu.P. and Suslin, A.A.: Homology of the general linear group over a local ring and Milnor's K-theory; (Russian) Izv. Akad. Nauk. SSSR Ser. Mat. 53 (1989), no. 1, 121146; translation in Math. USSR-Izv. 34 (1990) no. 1, 121-145.Google Scholar
10. Quillen, D.G.: Higher Algebraic K-theory I: Battelle K-theory Conf. 1972; Lecture Notes in Math. 371 (1973) 85147.CrossRefGoogle Scholar
11. Quillen, D.G.: On the cohomology and K-theory of the general linear groups over a finite field; Annals of Math. 96 (1972) 552586.CrossRefGoogle Scholar
12. Snaith, V.P.: Explicit Brauer Induction (with applications to algebra and number theory); Cambridge Studies in Advanced Math. 40 (1994) Cambridge University Press.Google Scholar
13. Snaith, V.P.: Local fundamental classes derived from higher dimensional K-groups; Proc. Great Lakes K-theory Conf., Fields Institute Communications Series 16 (A.M.Soc. Publications) 285324 (1997).Google Scholar
14. Soulé, C.: On higher p-adic regulators; Springer-Verlag Lecture Notes in Mathematics 854 (1981) 372401.Google Scholar
15. Tamme, G.: Comparison of the Karoubi regulator and the p-adic Borel regulator; preprint #17 (25 July 2007) DFG-Forschergruppe Regensburg/Leipzig.Google Scholar
16. Wagoner, J.B.: Continuous cohomology and p-adic K-theory; Springer-Verlag Lecture Notes in Mathematics 551 (1976) 241248.Google Scholar