Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T04:18:26.804Z Has data issue: false hasContentIssue false

Homotopy invariance of non-stable K1-functors

Published online by Cambridge University Press:  10 October 2013

A. Stavrova*
Affiliation:
Fields Institute for Research in Mathematical Sciences, Toronto, Canada and Department of Mathematics and Mechanics, St. Petersburg State University, Russia, anastasia.stavrova@gmail.com
Get access

Abstract

Let G be a reductive algebraic group over a field k, such that every semisimple normal subgroup of G has isotropic rank ≥ 2, i.e. contains (Gm)2. Let K1G be the non-stable K1-functor associated to G, also called the Whitehead group of G. We show that K1G(k) = K1G (k[X1 ,…, Xn]) for any n ≥ 1. If k is perfect, this implies that K1G (R) = K1G (R[X]) for any regular k-algebra R. If k is infinite perfect, one also deduces that K1G (R) → K1G (K) is injective for any local regular k-algebra R with the fraction field K.

Type
Research Article
Copyright
Copyright © ISOPP 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A.Abe, E., Whitehead groups of Chevalley groups over polynomial rings, Comm. Algebra 11 (1983), 12711307.Google Scholar
BHV.Bak, A., Hazrat, R., Vavilov, N., Localizaion—completion strikes again: Relative K 1 is nilpotentby abelian, J. of Pure and Appl. Algebra 213 (2009), 10751085.Google Scholar
BBR.Bak, A., Basu, R., Rao, R. A., Local-global principle for transvection groups, Proceedings of the AMS 138 (2010), 11911204.CrossRefGoogle Scholar
B.Bass, H., K-theory and stable algebra, Publ. Math. IHÉS 22 (1964), 560.Google Scholar
Ba.Basu, R., Topics in classical algebraic K-theory, PhD Thesis, 2006.Google Scholar
BT1.Borel, A., Tits, J., Groupes rÉductifs, Publ. Math. I.H.É.S. 27 (1965), 55151.Google Scholar
BT2.Borel, A., Tits, J., Compléments à l'article “Groupes réductifs”, Publ. Math. I.H.É.S. 41 (1972) 253276.Google Scholar
C.Cohn, P.M., On the structure of GL 2 of a ring, Publ. Math. I.H.É.S. 30 (1966), 365413.Google Scholar
CTS.Colliot-Thélène, J.-L., Sansuc, J.-J., Principal homogeneous spaces under flasque tori: applications, Journal of Algebra 106 (1987), 148205.Google Scholar
CTO.Colliot-Thélène, J.-L., Ojanguren, M., Espaces Principaux Homogènes Localement Triviaux, Publ. Math. I.H.É.S. 75(2) (1992), 97122.CrossRefGoogle Scholar
SGA3.Demazure, M., Grothendieck, A., Schémas en groupes, Lecture Notes in Mathematics 151-153, Springer-Verlag, Berlin-Heidelberg-New York, 1970.Google Scholar
Ge.Gersten, S. M., Higher K-theory of Rings, Lecture Notes in Mathematics 341, 342, Springer-Verlag, Berlin-Heidelberg-New York, 1973.Google Scholar
G.Gille, Ph., Le problème de Kneser-Tits, Sém. Bourbaki 983 (2007), 983–01–983-39.Google Scholar
GMV1.Grunewald, F., Mennicke, J., Vaserstein, L., On symplectic groups over polynomial rings, Math. Z. 206 (1991), 3556.Google Scholar
GMV2.Grunewald, F., Mennicke, J., Vaserstein, L., On the groups SL2(ℤ[x]) and SL2(k[x, y]), Israel J. Math. 86 (1994), 157193.Google Scholar
J.Jardine, J.F., On the homotopy groups of algebraic groups, J. Algebra 81 (1983), 180201.Google Scholar
K78.Kopeiko, V.I., Stabilization of symplectic groups over a ring of polynomials (Russian), Mat. Sb. (N.S.) 106 (148)(1) (1978), 94107.Google Scholar
K95a.Kopeiko, V.I., On the structure of the symplectic group of polynomial rings over regular rings (Russian), Fundam. Prikl. Mat. 1(2) (1995), 545548.Google Scholar
K95b.Kopeiko, V.I., On the structure of the special linear group over Laurent polynomial rings (Russian), Fundam. Prikl. Mat. 1 (4) (1995), 11111114.Google Scholar
K96.Kopeiko, V.I., Letter to the editors: “On the structure of the symplectic group of polynomial rings over regular rings” and “On the structure of the special linear group over Laurent polynomial rings” (Russian), Fundam. Prikl. Mat. 2(3) (1996), 953.Google Scholar
K99.Kopeiko, V.I., Symplectic groups over rings of Laurent polynomials, and patching diagrams (Russian), Fundam. Prikl. Mat. 5(3) (1999), 943945.Google Scholar
KrMC.Krstić, S., McCool, J., Free quotients of SL2(R[X]), Proc. Amer. Math. Soc. 125 (1997), 15851588.Google Scholar
L.Lindel, H., On the Bass—Quillen conjecture concerning projective modules over polynomial rings, Invent. Math. 65 (1981), 319323.Google Scholar
LSt.Luzgarev, A., Stavrova, A., Elementary subgroup of an isotropic reductive group is perfect, St. Petersburg Math. J. 23 (2012), 881890.Google Scholar
M.Margaux, B., The structure of the group G(k[t]): Variations on a theme of Soulé, Algebra and Number Theory 3 (2009), 393409.Google Scholar
Ma.Matsumura, H., Commutative algebra, second ed., Math. Lect. Note Series 56, Benjamin/Cummings Publishing Co., Inc., Reading, Massachusetts, 1980.Google Scholar
Mo.Morel, F., -Algebraic topology over a field, Lecture Notes in Mathematics 2052, 2012.Google Scholar
PaStV.Panin, I., Stavrova, A., Vavilov, N., On Grothendieck—Serre's conjecture concerning principal G-bundles over reductive group schemes: I, preprint, http://www.arxiv.org/abs/0905.1418.Google Scholar
PSt1.Petrov, V., Stavrova, A., Elementary subgroups of isotropic reductive groups, St. Petersburg Math. J. 20 (2009), 625644.Google Scholar
PSt2.Petrov, V., Stavrova, A., Tits indices over semilocal rings, Transf. Groups 16 (2011), 193217.Google Scholar
Po.Popescu, D., Letter to the Editor: General Néron desingularization and approximation, Nagoya Math. J. 118 (1990), 4553.Google Scholar
Q.Quillen, D., Projective modules over polynomial rings, Invent. Math. 36 (1976), 167171.Google Scholar
Sou.Soulé, C., Chevalley groups over polynomial rings, Homological group theory (Proc. Sympos., Durham, 1977), 359367, London Math. Soc. Lecture Note Ser. 36 (1979), Cambridge Univ. Press.CrossRefGoogle Scholar
St.Stavrova, A., Stroenije isotropnyh reduktivnyh grupp, PhD thesis, St. Petersburg State University, 2009.Google Scholar
Ste.Stepanov, A., private communication.Google Scholar
Su.Suslin, A.A., On the structure of the special linear group over polynomial rings, Math. USSR Izv. 11 (1977), 221238.Google Scholar
SuK.Suslin, A.A., Kopeiko, V.I., Quadratic modules and the orthogonal group over polynomial rings, J. of Soviet Math. 20 (1982), 26652691.CrossRefGoogle Scholar
Sw.Swan, R. G., Néron-Popescu desingularization, in Algebra and Geometry (Taipei, 1995), Lect. Alg. Geom. 2 (1998), 135198. Int. Press, Cambridge, MA.Google Scholar
T1.Tits, J., Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313329.Google Scholar
T2.Tits, J., Classification of algebraic semisimple groups, Algebraic groups and discontinuous subgroups, Proc. Sympos. Pure Math. 9, Amer. Math. Soc., Providence RI, 1966, 3362.Google Scholar
vdK.van der Kallen, W., A module structure on certain orbit sets of unimodular rows, J. Pure Appl. Algebra 57 (1989), 281316.Google Scholar
VW.Völkel, K., Wendt, M., On -fundamental groups of isotropic reductive groups, 2012, http://arxiv.org/abs/1207.2364.Google Scholar
V.Vorst, T., The general linear group of polynomial rings over regular rings, Comm. Algebra 9 (1981), 499509.Google Scholar
W.Wendt, M., -homotopy of Chevalley groups, J. K-Theory 5 (2010), 245287.Google Scholar