Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T00:05:53.885Z Has data issue: false hasContentIssue false

Classification of all connected subgroup schemes of a reductive group containing a split maximal torus

Published online by Cambridge University Press:  23 July 2008

Ekaterina Sopkina
Affiliation:
Department of Mathematics and Mechanics, St. Petersburg University and Fakultät für Mathematik, Universität Bielefeld, sopkina@yandex.ru.
Get access

Abstract

The main result of the paper is a classification of all connected subgroup schemes of a reductive group containing a split maximal torus, over an arbitrary field. The classification is expressed in terms of functions on the root system.

Type
Research Article
Copyright
Copyright © ISOPP 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Borel, A.Tits, J.Groupes réductifs. – Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55151CrossRefGoogle Scholar
2.Borewicz, Z.I., Vavilov, N.A.Subgroups of the general linear group over a semilocal ring containing the group of diagonal matrices. Proc. Steklov Inst. Math. 4 (1980), 4154Google Scholar
3.Jantzen, J.C.Representations of algebraic groups. – 2nd ed.Providence, RI: American Mathematical Society, 2003. - XIII, 576 pGoogle Scholar
4.Knop, F.Homogeneous varieties for semisimple groups of rank one. Compositio mathematica 98 (1995), 7789Google Scholar
5. Schemas en groupes (SGA 3) / Séminaire de Géométrie Algébrique du Bois Marie 1962/64, SGA 3. Dirigé par M. Demazure et A.Grothendieck. – Berlin: Springer, 1970. –T. 1-3Google Scholar
6.Sopkina, E.A.Classification of subgroup schemes in GLn that contain a split maximal torus. (Russian)Zap. Nauch. Sem. POMI, 321 (2005), 281296 (English transl. in J. Math. Sci.)Google Scholar
7.Springer, T.A.Linear algebraic groups. – 2nd ed.Boston: Birkhäuser, 1998 – X, 334 p.CrossRefGoogle Scholar
8.Vavilov, N.A.Bruhat decomposition for subgroups containing the group of diagonal matrices. II. J. Sov. Math. 27 (1984), 28652874CrossRefGoogle Scholar
9.Vavilov, N.Intermediate Subgroups in Chevalley Groups. – Groups of Lie type and their geometries (Como, 1993), 233280Google Scholar
10.Vavilov, N.A.Subgroups of Chevalley groups containing a maximal torus. – Proc. Leningrad Math. Soc. 1 (1990), 64109 (English transl. in Proc. Sanct-Petersburg Math. Soc.)Google Scholar
11.Vavilov, N.Plotkin, E.Chevalley groups over commutative rings I. Elementary calculations. Acta Appl. Math. 45 (1) (1996), 73113CrossRefGoogle Scholar
12.Waterhouse, W.C.Introduction to affine group schemes. – New York: Springer, 1979. - XI, 164 pCrossRefGoogle Scholar
13.Wenzel, C.Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field. – Transactions of the American Mathematical Society 337 (1) (1993), 211218CrossRefGoogle Scholar
14.Wenzel, C.Rationality of G/P for a nonreduced parabolic subgroup-scheme P. – Proceedings of the American Mathematical Society 117 (4) (1993), 899904Google Scholar